multi_tensor_lamb.cu 8.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

typedef enum{
17
18
19
  MOMENT_MODE_0   =0, // L2 regularization mode
  MOMENT_MODE_1   =1  // Decoupled weight decay mode
} adamMode_t;
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python);

using MATH_T = float;

template<typename T>
struct LAMBStage1Functor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<4>& tl,
    const float beta1,
    const float beta2,
    const float beta3,
    const float beta1_correction,
    const float beta2_correction,
    const float epsilon,
42
    adamMode_t mode,
43
    const float decay,
44
45
    const float global_grad_norm,
    const float max_global_grad_norm)
46
47
48
49
50
51
52
53
54
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

55
    float clipped_global_grad_norm = global_grad_norm > max_global_grad_norm ? global_grad_norm / max_global_grad_norm : 1.0f;
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    T* g = (T*)tl.addresses[0][tensor_loc];
    g += chunk_idx*chunk_size;

    T* p = (T*)tl.addresses[1][tensor_loc];
    p += chunk_idx*chunk_size;

    T* m = (T*)tl.addresses[2][tensor_loc];
    m += chunk_idx*chunk_size;

    T* v = (T*)tl.addresses[3][tensor_loc];
    v += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    // see note in multi_tensor_scale_kernel.cu
    for(int i_start = 0;
            i_start < n && i_start < chunk_size;
            i_start += blockDim.x*ILP)
    {
      MATH_T r_g[ILP];
      MATH_T r_p[ILP];
      MATH_T r_m[ILP];
      MATH_T r_v[ILP];
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          r_g[ii] = g[i];
          // special ?optimization? for lamb stage 1
          if (decay == 0) {
            r_p[ii] = MATH_T(0);
          }
          else {
            r_p[ii] = p[i];
          }
          r_m[ii] = m[i];
          r_v[ii] = v[i];
        } else {
          r_g[ii] = MATH_T(0);
          r_p[ii] = MATH_T(0);
          r_m[ii] = MATH_T(0);
          r_v[ii] = MATH_T(0);
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
106
        if (mode == MOMENT_MODE_0) {
107
          MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
108
          // L2 on scaled grad
109
110
111
112
113
          scaled_grad = scaled_grad + decay*r_p[ii];
          r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
          r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
          MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
          MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
114
          MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
115
116
117
118
119
120
121
122
          r_p[ii] = next_m_unbiased / denom;
        }
        else {
          MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
          r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
          r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
          MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
          MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
123
          MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
          r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          g[i] = r_p[ii];
          m[i] = r_m[ii];
          v[i] = r_v[ii];
        }
      }
    }
  }
};

// Step 2 reads in 'update' value and per-tensor param_norm and update_norm.
// It computes new parameter value.
template<typename T>
struct LAMBStage2Functor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<2>& tl,
    const float* per_tensor_param_norm,
    const float* per_tensor_update_norm,
153
154
155
    const float learning_rate,
    const float decay,
    bool use_nvlamb)
156
157
158
159
160
161
162
163
164
165
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int tensor_num = tl.start_tensor_this_launch + tensor_loc;
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

166
167
168
169
170
171
172
173
174
    MATH_T ratio = learning_rate;
    // nvlamb: apply adaptive learning rate to all parameters
    // otherwise, only apply to those with non-zero weight decay
    if (use_nvlamb || (decay != 0.0))
    {
      float param_norm = per_tensor_param_norm[tensor_num];
      float update_norm = per_tensor_update_norm[tensor_num];
      ratio = (update_norm != 0.0f && param_norm != 0.0f) ? learning_rate * (param_norm / update_norm) : learning_rate;
    }
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    T* update = (T*)tl.addresses[0][tensor_loc];
    update += chunk_idx*chunk_size;

    T* p = (T*)tl.addresses[1][tensor_loc];
    p += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

    for(int i_start = 0;
            i_start < n && i_start < chunk_size;
            i_start += blockDim.x*ILP)
    {
      MATH_T r_p[ILP];
      MATH_T r_update[ILP];
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
       	int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          r_p[ii] = p[i];
          r_update[ii] = update[i];
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
       	r_p[ii] = r_p[ii] - (ratio * r_update[ii]);
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
        {
          p[i] = r_p[ii];
        }
      }
    }
  }
};


void multi_tensor_lamb_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
  const int bias_correction,
  const float weight_decay,
  const int grad_averaging,
231
  const int mode,
232
233
234
  const float global_grad_norm,
  const float max_grad_norm,
  at::optional<bool> use_nvlamb_python)
235
236
237
238
239
{
  using namespace at;
  // Master weight and 32bit momentum(potentially changing) is not handled by this
  // So we assume every tensor are all in the same type

240
241
  bool use_nvlamb = use_nvlamb_python.has_value() ? use_nvlamb_python.value() : false;

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  // Handle bias correction mode
  float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
  if (bias_correction == 1) {
    bias_correction1 = 1 - std::pow(beta1, step);
    bias_correction2 = 1 - std::pow(beta2, step);
  }

  // Handle grad averaging mode
  float beta3 = 1.0f;
  if (grad_averaging == 1) beta3 = 1 - beta1;

  std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
  std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin()+1, tensor_lists.begin()+2);

  // Compute per tensor param norm
  auto param_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, param_list, true);

  // We now in-place modify grad to store update before compute its norm
  // Generally this is not a issue since people modify grad in step() method all the time
  // We can also grab list of empty tensor to avoid this, but I'd like to save space/cpu code
  DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1",
      multi_tensor_apply<4>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        LAMBStage1Functor<scalar_t_0>(),
        beta1,
        beta2,
        beta3, // 1-beta1 or 1 depends on averaging mode
        bias_correction1,
        bias_correction2,
        epsilon,
275
        (adamMode_t) mode,
276
        weight_decay,
277
        global_grad_norm,
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        max_grad_norm); )

  // Compute update norms
  auto update_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, true);

  std::vector<std::vector<at::Tensor>> grad_param_list(tensor_lists.begin(), tensor_lists.begin()+2);

  DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2",
      multi_tensor_apply<2>(
        BLOCK_SIZE,
        chunk_size,
       	noop_flag,
        grad_param_list,
        LAMBStage2Functor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
292
293
        std::get<1>(param_norm_tuple).DATA_PTR<float>(),
        std::get<1>(update_norm_tuple).DATA_PTR<float>(),
294
295
296
        lr,
	weight_decay,
	use_nvlamb); )
297
298
299
300

  AT_CUDA_CHECK(cudaGetLastError());

}