main_fp16_optimizer.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import argparse
import os
import shutil
import time

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

Michael Carilli's avatar
Michael Carilli committed
19
20
import numpy as np

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
try:
    from apex.parallel import DistributedDataParallel as DDP
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--dynamic-loss-scale', action='store_true',
                    help='Use dynamic loss scaling.  If supplied, this argument supersedes ' +
                    '--static-loss-scale.')
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')

72
parser.add_argument("--local_rank", default=0, type=int)
73
74
75

cudnn.benchmark = True

Michael Carilli's avatar
Michael Carilli committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

93
94
95
96
97
best_prec1 = 0
args = parser.parse_args()
def main():
    global best_prec1, args

98
99
100
101
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

102
    args.gpu = 0
103
104
    args.world_size = 1

105
    if args.distributed:
106
        args.gpu = args.local_rank % torch.cuda.device_count()
107
        torch.cuda.set_device(args.gpu)
108
109
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
110
        args.world_size = torch.distributed.get_world_size()
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    if args.static_loss_scale != 1.0:
        if not args.fp16:
            print("Warning:  if --fp16 is not used, static_loss_scale will be ignored.")

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    model = model.cuda()
    if args.fp16:
        model = network_to_half(model)
    if args.distributed:
131
        # shared param turns off bucketing in DDP, for lower latency runs this can improve perf
132
        model = DDP(model, shared_param=True)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.static_loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
        val_size = 320 # I chose this value arbitrarily, we can adjust.
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
175
176
            # transforms.ToTensor(), Too slow
            # normalize,
177
        ]))
178
179
180
181
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
182

183
184
    train_sampler = None
    val_sampler = None
185
186
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
187
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
188
189
190

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
Michael Carilli's avatar
Michael Carilli committed
191
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
192
193

    val_loader = torch.utils.data.DataLoader(
194
        val_dataset,
195
        batch_size=args.batch_size, shuffle=False,
Michael Carilli's avatar
Michael Carilli committed
196
        num_workers=args.workers, pin_memory=True,
197
        sampler=val_sampler,
Michael Carilli's avatar
Michael Carilli committed
198
        collate_fn=fast_collate)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
216
        if args.local_rank == 0:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer' : optimizer.state_dict(),
            }, is_best)

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
Michael Carilli's avatar
Michael Carilli committed
231
232
233
234
235
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
        if args.fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()
236
237
238
239
240
241
242
243
244
245
246
247
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
            self.next_input = self.next_input.cuda(async=True)
            self.next_target = self.next_target.cuda(async=True)
Michael Carilli's avatar
Michael Carilli committed
248
249
250
251
252
253
            if args.fp16:
                self.next_input = self.next_input.half()
            else:
                self.next_input = self.next_input.float()
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

279
280
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        output = model(input_var)
        loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        if args.fp16:
            optimizer.backward(loss)
        else:
            loss.backward()
        optimizer.step()

316
        torch.cuda.synchronize()
317
318
319
320
321
322
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

323
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
324
325
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
326
                  'Speed {3:.3f} ({4:.3f})\t'
327
328
329
330
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
331
                   epoch, i, len(train_loader),
332
333
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
334
                   batch_time=batch_time,
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        target = target.cuda(async=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            output = model(input_var)
            loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

367
368
369
370
371
372
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
373
374
375
376
377
378
379
380
381

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

382
        if args.local_rank == 0 and i % args.print_freq == 0:
383
384
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
385
                  'Speed {2:.3f} ({3:.3f})\t'
386
387
388
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
389
                   i, len(val_loader),
390
391
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
392
                   batch_time=batch_time, loss=losses,
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


427
428
429
430
431
432
433
434
435
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
436
437
438
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
439

Michael Carilli's avatar
Michael Carilli committed
440
441
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
466
    rt /= args.world_size
467
468
469
470
    return rt

if __name__ == '__main__':
    main()