test_add_param_group.py 5.69 KB
Newer Older
mcarilli's avatar
mcarilli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import unittest

import functools as ft
import itertools as it

from apex import amp
from apex.amp import _amp_state
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter

from utils import common_init, HALF, FLOAT,\
    ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT

class MyModel(torch.nn.Module):
    def __init__(self, unique):
        super(MyModel, self).__init__()
        self.weight0 = Parameter(unique +
            torch.arange(2, device='cuda', dtype=torch.float32))
        self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16))

    @staticmethod
    def ops(input, weight0, weight1):
        return ((input*(weight0.float()))*(weight1.float())).sum()

    def forward(self, input):
        return self.ops(input, self.weight0, self.weight1)


# Abandon all hope, ye who enter here.


class TestAddParamGroup(unittest.TestCase):
    def setUp(self):
        self.x = torch.ones((2), device='cuda', dtype=torch.float32)
        common_init(self)

    def tearDown(self):
        pass

    def zero_grad(self, models, optimizer, how_to_zero):
        if how_to_zero == "none":
            for model in models:
                for param in model.parameters():
                    param.grad = None
        elif how_to_zero == "model":
            for model in models:
                model.zero_grad()
        elif how_to_zero == "optimizer":
            optimizer.zero_grad()

    def test_add_param_group(self):
        for opt_level in ("O0", "O1", "O2", "O3"):
          for zero_before_add in (True, False):
            for try_accumulation in (True, False):
              model0 = MyModel(1)
              model1 = MyModel(2)

              optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                          momentum=0.125)

              optimizer.zero_grad()
              loss = model0(self.x)
              loss.backward()
              optimizer.step()

              if zero_before_add:
                  optimizer.zero_grad()
              optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5})
              if not zero_before_add:
                  optimizer.zero_grad()

              loss = model0(self.x) + model1(self.x)
              loss.backward(retain_graph=try_accumulation)
              if try_accumulation:
                  loss.backward()
              optimizer.step()

              # Once more to make sure the new params pick up momemtums properly
              optimizer.zero_grad()
              loss = model0(self.x) + model1(self.x)
              loss.backward(retain_graph=try_accumulation)
              if try_accumulation:
                  loss.backward()
              optimizer.step()

              reference_params = [param.data.clone() for param in model0.parameters()] + \
                                 [param.data.clone() for param in model1.parameters()]

              for how_to_zero in "none", "model", "optimizer":
                  model0 = MyModel(1)
                  model1 = MyModel(2)

                  optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                              momentum=0.125)

                  _amp_state.allow_incoming_model_not_fp32 = True
                  [model0, model1], optimizer = amp.initialize([model0, model1],
                      optimizer,
                      opt_level=opt_level,
                      verbosity=0,
                      cast_model_type=False)
                  _amp_state.allow_incoming_model_not_fp32 = False

                  _amp_state.loss_scalers[0]._loss_scale = 4.0

                  self.zero_grad([model0, model1], optimizer, how_to_zero)
                  loss = model0(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward()
                  optimizer.step()

                  if zero_before_add:
                      self.zero_grad([model0, model1], optimizer, how_to_zero)
                  optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5})
                  if not zero_before_add:
                      self.zero_grad([model0, model1], optimizer, how_to_zero)

                  loss = model0(self.x) + model1(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward(retain_graph=try_accumulation)
                  if try_accumulation:
                      with amp.scale_loss(loss, optimizer) as scaled_loss:
                          scaled_loss.backward()
                  optimizer.step()

                  # Once more to make sure the new params pick up momentums properly
                  self.zero_grad([model0, model1], optimizer, how_to_zero)
                  loss = model0(self.x) + model1(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward(retain_graph=try_accumulation)
                  if try_accumulation:
                      with amp.scale_loss(loss, optimizer) as scaled_loss:
                          scaled_loss.backward()
                  optimizer.step()

                  final_params = [param.data.clone() for param in model0.parameters()] + \
                                 [param.data.clone() for param in model1.parameters()]

                  for reference, final in zip(reference_params, final_params):
                      self.assertTrue(torch.allclose(reference.to(final.dtype), final),
                                      "opt_level = {}, how_to_zero = {}, zero_before_add = {}".format(
                                      opt_level, how_to_zero, zero_before_add))


if __name__ == '__main__':
    unittest.main()