main.py 7.67 KB
Newer Older
Christian Sarofeen's avatar
Christian Sarofeen committed
1
2
3
4
5
6
7
8
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
Michael Carilli's avatar
Michael Carilli committed
9
from apex.fp16_utils import to_python_float
Christian Sarofeen's avatar
Christian Sarofeen committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

#=====START: ADDED FOR DISTRIBUTED======
'''Add custom module for distributed'''

try:
    from apex.parallel import DistributedDataParallel as DDP
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

'''Import distributed data loader'''
import torch.utils.data
import torch.utils.data.distributed

'''Import torch.distributed'''
import torch.distributed as dist

#=====END:   ADDED FOR DISTRIBUTED======

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')

#======START: ADDED FOR DISTRIBUTED======
'''
Add some distributed options. For explanation of dist-url and dist-backend please see
http://pytorch.org/tutorials/intermediate/dist_tuto.html

--world-size and --rank are required parameters as they will be used by the multiproc.py launcher
but do not have to be set explicitly.
'''

parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--world-size', default=1, type=int,
                    help='Number of GPUs to use. Can either be manually set ' +
                    'or automatically set by using \'python -m multiproc\'.')
parser.add_argument('--rank', default=0, type=int,
                    help='Used for multi-process training. Can either be manually set ' +
                    'or automatically set by using \'python -m multiproc\'.')
#=====END:   ADDED FOR DISTRIBUTED======

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

#======START: ADDED FOR DISTRIBUTED======
'''Add a convenience flag to see if we are running distributed'''
args.distributed = args.world_size > 1

'''Check that we are running with cuda, as distributed is only supported for cuda.'''
if args.distributed:
    assert args.cuda, "Distributed mode requires running with CUDA."

if args.distributed:
    '''
    Set cuda device so everything is done on the right GPU.
    THIS MUST BE DONE AS SOON AS POSSIBLE.
    '''
    torch.cuda.set_device(args.rank % torch.cuda.device_count())

    '''Initialize distributed communication'''
Michael Carilli's avatar
Michael Carilli committed
87
88
89
90
    dist.init_process_group(args.dist_backend, 
                            init_method=args.dist_url,
                            world_size=args.world_size,
                            rank=args.rank)
Christian Sarofeen's avatar
Christian Sarofeen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

#=====END:   ADDED FOR DISTRIBUTED======

torch.manual_seed(args.seed)
if args.cuda:
    torch.cuda.manual_seed(args.seed)


kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}

#=====START: ADDED FOR DISTRIBUTED======
'''
Change sampler to distributed if running distributed.
Shuffle data loader only if distributed.
'''
train_dataset = datasets.MNIST('../data', train=True, download=True,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.1307,), (0.3081,))
                               ]))

if args.distributed:
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
    train_sampler = None

train_loader = torch.utils.data.DataLoader(
    train_dataset, sampler=train_sampler,
    batch_size=args.batch_size, shuffle=(train_sampler is None), **kwargs
)

#=====END:   ADDED FOR DISTRIBUTED======

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.test_batch_size, shuffle=True, **kwargs)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

model = Net()
if args.cuda:
    model.cuda()

#=====START: ADDED FOR DISTRIBUTED======
'''
Wrap model in our version of DistributedDataParallel.
This must be done AFTER the model is converted to cuda.
'''

if args.distributed:
    model = DDP(model)
#=====END:   ADDED FOR DISTRIBUTED======

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
Michael Carilli's avatar
Michael Carilli committed
180
                100. * batch_idx / len(train_loader), to_python_float(loss.data)))
Christian Sarofeen's avatar
Christian Sarofeen committed
181
182
183
184
185

def test():
    model.eval()
    test_loss = 0
    correct = 0
Michael Carilli's avatar
Michael Carilli committed
186
187
188
189
190
191
192
193
194
    for data, target in test_loader: 
        with torch.no_grad():
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            output = model(data)
            test_loss += to_python_float(F.nll_loss(output, target, size_average=False).data) # sum up batch loss
            pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()
Christian Sarofeen's avatar
Christian Sarofeen committed
195
196
197
198
199
200
201
202

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, args.epochs + 1):
203
    #=====START: ADDED FOR DISTRIBUTED======
204
205
    if args.distributed:
        train_sampler.set_epoch(epoch)
206
207
    #=====END:   ADDED FOR DISTRIBUTED======

Christian Sarofeen's avatar
Christian Sarofeen committed
208
209
    train(epoch)
    test()