main_amp.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import argparse
import os
import shutil
import time

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

Michael Carilli's avatar
Michael Carilli committed
18
19
import numpy as np

20
21
22
try:
    from apex.parallel import DistributedDataParallel as DDP
    from apex.fp16_utils import *
23
    from apex import amp
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
46
                    metavar='N', help='mini-batch size per process (default: 256)')
47
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
48
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')
66
parser.add_argument('--deterministic', action='store_true')
67

68
parser.add_argument("--local_rank", default=0, type=int)
jjsjann123's avatar
jjsjann123 committed
69
70
parser.add_argument('--sync_bn', action='store_true',
                    help='enabling apex sync BN.')
71
72
73

cudnn.benchmark = True

Michael Carilli's avatar
Michael Carilli committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

91
92
best_prec1 = 0
args = parser.parse_args()
93
94
95
96
97

if args.deterministic:
    cudnn.benchmark = False
    cudnn.deterministic = True
    torch.manual_seed(args.local_rank)
98
    torch.set_printoptions(precision=10)
99

100
101
102
# Initialize Amp 
amp_handle = amp.init(enabled=args.fp16)

103
104
105
def main():
    global best_prec1, args

106
107
108
109
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

110
    args.gpu = 0
111
112
    args.world_size = 1

113
    if args.distributed:
114
        args.gpu = args.local_rank % torch.cuda.device_count()
115
        torch.cuda.set_device(args.gpu)
116
117
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
118
        args.world_size = torch.distributed.get_world_size()
119
120
121
122
123
124
125
126
127
128
129

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
130

jjsjann123's avatar
jjsjann123 committed
131
132
133
134
    if args.sync_bn:
        import apex
        print("using apex synced BN")
        model = apex.parallel.convert_syncbn_model(model)
135
136

    model = model.cuda()
137

138
    if args.distributed:
139
140
141
142
143
        # By default, apex.parallel.DistributedDataParallel overlaps communication with 
        # computation in the backward pass.
        # model = DDP(model)
        # delay_allreduce delays all communication to the end of the backward pass.
        model = DDP(model, delay_allreduce=True)
144
145
146
147

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

148
149
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
150
151
152
153
    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

154
    # Optionally resume from a checkpoint
155
    if args.resume:
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
        val_size = 320 # I chose this value arbitrarily, we can adjust.
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
187
188
            # transforms.ToTensor(), Too slow
            # normalize,
189
        ]))
190
191
192
193
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
194

195
196
    train_sampler = None
    val_sampler = None
197
198
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
199
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
200
201
202

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
Michael Carilli's avatar
Michael Carilli committed
203
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
204
205

    val_loader = torch.utils.data.DataLoader(
206
        val_dataset,
207
        batch_size=args.batch_size, shuffle=False,
Michael Carilli's avatar
Michael Carilli committed
208
        num_workers=args.workers, pin_memory=True,
209
        sampler=val_sampler,
Michael Carilli's avatar
Michael Carilli committed
210
        collate_fn=fast_collate)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
228
        if args.local_rank == 0:
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer' : optimizer.state_dict(),
            }, is_best)

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
Michael Carilli's avatar
Michael Carilli committed
243
244
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
245
246
247
248
249
        # With Amp, it isn't necessary to manually convert data to half.
        # Type conversions are done internally on the fly within patched torch functions.
        # if args.fp16:
        #     self.mean = self.mean.half()
        #     self.std = self.std.half()
250
251
252
253
254
255
256
257
258
259
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
260
261
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
262
263
264
265
266
267
            # With Amp, it isn't necessary to manually convert data to half.
            # Type conversions are done internally on the fly within patched torch functions.
            # if args.fp16:
            #     self.next_input = self.next_input.half()
            # else:
            self.next_input = self.next_input.float()
Michael Carilli's avatar
Michael Carilli committed
268
269
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

295
296
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

297
298
299
300
301
302
303
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
ptrblck's avatar
ptrblck committed
304
305
        output = model(input)
        loss = criterion(output, target)
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
323
324
325
326

        with amp_handle.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()

327
328
        optimizer.step()

329
        torch.cuda.synchronize()
330
331
332
333
334
335
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

336
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
337
338
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
339
                  'Speed {3:.3f} ({4:.3f})\t'
340
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
341
                  'Loss {loss.val:.10f} ({loss.avg:.4f})\t'
342
343
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
344
                   epoch, i, len(train_loader),
345
346
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
347
                   batch_time=batch_time,
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        # compute output
        with torch.no_grad():
ptrblck's avatar
ptrblck committed
370
371
            output = model(input)
            loss = criterion(output, target)
372
373
374
375

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

376
377
378
379
380
381
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
382
383
384
385
386
387
388
389
390

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

391
        if args.local_rank == 0 and i % args.print_freq == 0:
392
393
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
394
                  'Speed {2:.3f} ({3:.3f})\t'
395
396
397
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
398
                   i, len(val_loader),
399
400
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
401
                   batch_time=batch_time, loss=losses,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


436
437
438
439
440
441
442
443
444
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
445
446
447
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
448

Michael Carilli's avatar
Michael Carilli committed
449
450
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
475
    rt /= args.world_size
476
477
478
479
    return rt

if __name__ == '__main__':
    main()