test_backward.py 5.1 KB
Newer Older
Christian Sarofeen's avatar
Christian Sarofeen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from torch.autograd import Variable
import apex._C
import numpy as np
from compare import compare
from norm import pt_norm, get_norm_shape

torch.manual_seed(2)
torch.cuda.manual_seed(2)
# torch.cuda.manual_seed_all(2)
torch.set_printoptions(precision=10)

sizes = [
    # (3,  512, 1024),
    # (3,  512, 1536),
    (3,  768, 1536),
    # (3,  768, 2048),
    # (3, 1024, 2048),
    # (1, 1024, 4096),
    # (1, 2048, 8192),
    # (1, 4096, 4096), # this is not one of natalia's sizes, just a reference benchmark.
    # (4096, 4096, 1), # this is not one of natalia's sizes, just a reference benchmark.
    ]

# rows = 3
# cols = 512
# fast = 1024
HALF = True
RAND = True
dim = 2

for rows, cols, fast in sizes:
    dims = rows, cols, fast
    # Incoming gradient vectors we will use later
    # Need to create the fp16 versions as a half() copy of a Tensor first rather than
    # a Variable, because if you create pt_input_control as a Variable then say
    # pt_input_fp16 = pt_input_control.half(), you are accidentally making pt_input_fp16 part of 
    # pLpOutput_control's computational graph, instead of the leaf of its own separate graph.
    
    # Careful: if you initialize with torch.ones, the gradient wrt input becomes analytically zero :P
    if RAND:
        pLpOutput_control = torch.cuda.FloatTensor(*dims      ).uniform_()*1.0 
        norm_shape = get_norm_shape(pLpOutput_control, dim)
        pLpg_control      = torch.cuda.FloatTensor(*norm_shape).uniform_()
        pt_input_control  = torch.cuda.FloatTensor(*dims      ).uniform_()
        pt_g_control      = torch.cuda.FloatTensor(*norm_shape).uniform_()
    else:
        pLpOutput_control = torch.cuda.FloatTensor(*dims      ).fill_(1.)
        norm_shape = get_norm_shape(pLpOutput_control, dim)
        pLpg_control      = torch.cuda.FloatTensor(*norm_shape).fill_(2.)
        pt_input_control  = torch.cuda.FloatTensor(*dims      ).fill_(4.0)
        pt_g_control      = torch.cuda.FloatTensor(*norm_shape).fill_(3.0)
    
    pLpOutput_fp16 = pLpOutput_control.clone()
    pLpg_fp16      = pLpg_control     .clone()
    pt_input_fp16  = pt_input_control .clone()
    pt_g_fp16      = pt_g_control     .clone()
    
    if HALF:
        pLpOutput_fp16 = pLpOutput_fp16.half()
        pLpg_fp16      = pLpg_fp16     .half() 
        pt_input_fp16  = pt_input_fp16 .half()
        pt_g_fp16      = pt_g_fp16     .half()
    
    pLpOutput_control = Variable(pLpOutput_control)
    pLpg_control      = Variable(pLpg_control     )
    pLpOutput_fp16    = Variable(pLpOutput_fp16   )
    pLpg_fp16         = Variable(pLpg_fp16        )
    
    pt_input_control = Variable(pt_input_control, requires_grad=True)
    pt_g_control     = Variable(pt_g_control    , requires_grad=True)
    pt_input_fp16    = Variable(pt_input_fp16   , requires_grad=True)
    pt_g_fp16        = Variable(pt_g_fp16       , requires_grad=True)
    
    # Do forward pass in fp16 and fp32
    pt_norms_fp16 = pt_norm(pt_input_fp16, dim)
    pt_norms_control = pt_norm(pt_input_control, dim)
    
    pt_output_fp16    = pt_input_fp16   *(pt_g_fp16   /pt_norms_fp16   )
    pt_output_control = pt_input_control*(pt_g_control/pt_norms_control)
    
    # Run the Cuda version
    pLpInput_cuda = torch.cuda.FloatTensor(*dims      ).fill_(0.)
    pLpg_cuda     = torch.cuda.FloatTensor(*norm_shape).fill_(0.)
    
    if HALF:
        pLpInput_cuda = pLpInput_cuda.half()
        pLpg_cuda     = pLpg_cuda    .half()
   
    torch.cuda.nvtx.range_push("kernel weight norm backward")
    apex._C.weight_norm_bwd(pLpInput_cuda, 
                            pLpg_cuda, 
                            pLpOutput_fp16,
                            pt_input_fp16, 
                            pt_g_fp16,
                            pt_norms_control.data,
                            dim)
    torch.cuda.nvtx.range_pop()
    
    print("grad_output:  ", pLpOutput_fp16.data)
    print(" grad_input:  ", pLpInput_cuda)
    print(" savedInput:  ", pt_input_fp16.data)
    print("pt_norms_control:  ", pt_norms_control.data)
    print("pt_norms_fp16:  ", pt_norms_fp16.data)
   
    torch.cuda.nvtx.range_push("pytorch fp16 backward")
    pt_output_fp16   .backward(gradient=pLpOutput_fp16   , create_graph=True)
    torch.cuda.nvtx.range_pop()
    torch.cuda.nvtx.range_push("pytorch fp32 backward")
    pt_output_control.backward(gradient=pLpOutput_control, create_graph=True)
    torch.cuda.nvtx.range_pop()
    
    # pt_output_fp16 and pt_output_control are still saved, but
    # pt_output_fp16.grad and pt_output_control.grad are None at this point 
    # because the graph is freed in the backwards pass.  
    # Specifying create_/retain_ graph don't seem to force saving of 
    # either the intermediate variables or their gradients.
    
    print("Comparing gradients wrt v")
    torch.cuda.nvtx.range_push("compare pLpv")
    compare(pLpInput_cuda, pt_input_fp16.grad.data, pt_input_control.grad.data, rows)
    torch.cuda.nvtx.range_pop()
    
    print("Comparing gradients wrt g")
    torch.cuda.nvtx.range_push("compare pLpg")
    compare(pLpg_cuda, pt_g_fp16.grad.data, pt_g_control.grad.data, pLpg_cuda.size(0))
    torch.cuda.nvtx.range_pop()