test_autograd.py 5.14 KB
Newer Older
Christian Sarofeen's avatar
Christian Sarofeen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
from torch.autograd import Variable
from apex.fp16_utils import Fused_Weight_Norm
from compare import compare
from norm import pt_norm, get_norm_shape

torch.manual_seed(2)
torch.cuda.manual_seed(2)
# torch.cuda.manual_seed_all(2)
torch.set_printoptions(precision=10)

rows = 1    # 321
cols = 4096 # 33
fast = 4096 # 185
dims = rows, cols, fast

dim = 2
CUDA_HALF = False
RAND      = True # If false, input gradients (the result of the backward pass) 
                 # should be analytically zero.

# Loss will be computed via (output*elementwise).sum().
# This means that output gradients in the backward pass will be equal
# to elementwise, so by manipulating elementwise, we have easy 
# fine-grained control over the output gradients we'd like to use for
# testing purposes.
# 
# The alternative is just to create the output_gradients manually 
# and call output.backward(gradient=output_gradients), 
# as is done in test_backward.py.
# But I wanted a minimal working sample similar to an "actual" use case, 
# where gradients are computed by calling backward() on a scalar Loss.

if RAND:
    # With std=6.0, I observe the pytorch fp16 ops going unstable
    # while the fused kernel remains stable (sometimes).
    pt_in_fp32       = torch.cuda.FloatTensor(*dims      ).normal_(std=1.0)
    norm_shape = get_norm_shape(pt_in_fp32, dim)
    pt_g_fp32        = torch.cuda.FloatTensor(*norm_shape).normal_(std=1.0)
    elementwise_fp32 = torch.cuda.FloatTensor(*dims      ).normal_(std=1.0)
else:
    pt_in_fp32       = torch.cuda.FloatTensor(*dims      ).fill_(1.0)
    norm_shape = get_norm_shape(pt_in_fp32, dim)
    pt_g_fp32        = torch.cuda.FloatTensor(*norm_shape).fill_(2.0)
    elementwise_fp32 = torch.cuda.FloatTensor(*dims      ).fill_(0.5)

pt_in_fp16       = pt_in_fp32.half()
cd_in_prec       = pt_in_fp32.clone()
pt_g_fp16        = pt_g_fp32.half()
cd_g_prec        = pt_g_fp32.clone()
elementwise_fp16 = elementwise_fp32.half()
elementwise_prec = elementwise_fp32.clone()

if CUDA_HALF:
    cd_in_prec       = cd_in_prec.half()
    cd_g_prec        = cd_g_prec.half()
    elementwise_prec = elementwise_prec.half()

pt_in_fp32 = Variable(pt_in_fp32 , requires_grad=True)
pt_in_fp16 = Variable(pt_in_fp16 , requires_grad=True)
cd_in_prec = Variable(cd_in_prec , requires_grad=True)

pt_g_fp32 = Variable(pt_g_fp32 , requires_grad=True)
pt_g_fp16 = Variable(pt_g_fp16 , requires_grad=True)
cd_g_prec = Variable(cd_g_prec , requires_grad=True)

elementwise_fp32 = Variable(elementwise_fp32, requires_grad=False)
elementwise_fp16 = Variable(elementwise_fp16, requires_grad=False)
elementwise_prec = Variable(elementwise_prec, requires_grad=False)

torch.cuda.nvtx.range_push("fp16 forward, {}".format(pt_in_fp16.size()))
pt_norms_fp16 = pt_norm(pt_in_fp16, dim)
pt_out_fp16 = pt_in_fp16*(pt_g_fp16/pt_norms_fp16) 
torch.cuda.nvtx.range_pop()
# torch.cuda.synchronize()

torch.cuda.nvtx.range_push("fp32 forward, {}".format(pt_in_fp32.size()))
pt_norms_fp32 = pt_norm(pt_in_fp32, dim)
pt_out_fp32 = pt_in_fp32*(pt_g_fp32/pt_norms_fp32)
torch.cuda.nvtx.range_pop()
# torch.cuda.synchronize()

# print("pt_norms_fp16    = ", pt_norms_fp16   )
# print("pt_norms_fp32 = ", pt_norms_fp32)

# print( "cd_in_prec.data_ptr = {:x}".format(cd_in_prec.data_ptr()))

# print("elementwise_fp16 = ", elementwise_fp16)

cd_in_contig = cd_in_prec.contiguous()
# Deliberately make noncontig to see if fused_norm
# will handle the error
# cd_in_contig = cd_in_contig[:,0:5]
# print(type(cd_in_contig))
torch.cuda.nvtx.range_push("kernel forward")
fused_weight_norm = Fused_Weight_Norm.apply
cd_out_prec = fused_weight_norm(cd_in_contig, cd_g_prec, dim)
torch.cuda.nvtx.range_pop()
# torch.cuda.synchronize()

# print("type(cd_out_prec.data) = ", type(cd_out_prec.data))
# print("cd_out_prec.data_ptr = {:x}".format(cd_out_prec.data_ptr()))

print("\n\n\nCOMPARING FORWARD PASS RESULTS\n\n\n")
compare(cd_out_prec.data, 
        pt_out_fp16.data,
        pt_out_fp32.data,
        rows)

# It's ok to use elementwise_fp16 as a leaf in both the cuda and pytorch graphs.
# This sharing should not affect the computed gradients wrt pt_in_fp16 and cd_in_prec.
# However, just remember:  
# If we set requires_grad=True for elementwise_fp16, elementwise_fp16.grad.data
# will accumulate gradients during the backward passes for both the cd and pytorch Losses.
#
# I do need    v these parentheses          v             
Loss_cd_prec = (cd_out_prec*elementwise_prec).sum()
# print(L_cd_fp16)
Loss_pt_fp16 = (pt_out_fp16*elementwise_fp16).sum()
# print(L_pt_fp16)
Loss_pt_fp32 = (pt_out_fp32*elementwise_fp32).sum()
# print(L_pt_fp32)

torch.cuda.nvtx.range_push("kernel backward")
Loss_cd_prec.backward()
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_push("fp16 backward")
Loss_pt_fp16.backward()
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_push("fp32 backward")
Loss_pt_fp32.backward()
torch.cuda.nvtx.range_pop()

print("\n\n\nCOMPARING v GRADIENT RESULTS\n\n\n")
compare(cd_in_prec.grad.data, 
        pt_in_fp16.grad.data, 
        pt_in_fp32.grad.data, 
        rows)

print("\n\n\nCOMPARING g GRADIENT RESULTS\n\n\n")
compare(cd_g_prec.grad.data, 
        pt_g_fp16.grad.data, 
        pt_g_fp32.grad.data, 
        cd_g_prec.size(0))