test_fp16_optimizer.py 5.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import unittest
import torch
import apex

class TestFP16Optimizer(unittest.TestCase):
    def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
        self.max_abs_diff = max_abs_diff
        self.max_rel_diff = max_rel_diff
        self.iters = iters
        torch.cuda.manual_seed(13337)

        N, D_in, D_out = 64, 1024, 16
        self.N = N
        self.D_in = D_in
        self.D_out = D_out
        self.x = torch.randn((N, D_in), dtype=torch.float16, device='cuda')
        self.ref_model = torch.nn.Linear(D_in, D_out).cuda().half()
        self.tst_model = torch.nn.Linear(D_in, D_out).cuda().half()
        for p,q in zip(self.tst_model.parameters(), self.ref_model.parameters()):
            p.data.copy_(q.data)

    def get_max_diff(self, ref_param, tst_param):
        max_abs_diff = max_rel_diff = 0
        for p_ref, p_tst in zip(ref_param, tst_param):
            max_abs_diff_p = (p_ref - p_tst).abs().max().item()
            max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()

            if max_abs_diff_p > max_abs_diff:  max_abs_diff = max_abs_diff_p
            if max_rel_diff_p > max_rel_diff:  max_rel_diff = max_rel_diff_p

        return max_abs_diff, max_rel_diff

    def test_fp16_optimizer(self):

        ref_optim = torch.optim.Adam(self.ref_model.parameters())
        ref_optim = apex.fp16_utils.FP16_Optimizer(ref_optim, verbose=False)

        tst_optim = apex.optimizers.FusedAdam(self.tst_model.parameters())
        tst_optim = apex.optimizers.FP16_Optimizer(tst_optim)

        for i in range(self.iters):
            ref_loss = self.ref_model(self.x).sum()
            ref_optim.backward(ref_loss)
            ref_optim.step()

            tst_loss = self.tst_model(self.x).sum()
            tst_optim.backward(tst_loss)
            tst_optim.step()

            max_abs_diff, max_rel_diff = self.get_max_diff(self.ref_model.parameters(), self.tst_model.parameters())
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_loss_scaling(self):

        ref_optim = torch.optim.Adam(self.ref_model.parameters())
        ref_optim = apex.fp16_utils.FP16_Optimizer(ref_optim, static_loss_scale=128.0, verbose=False)

        tst_optim = apex.optimizers.FusedAdam(self.tst_model.parameters())
        tst_optim = apex.optimizers.FP16_Optimizer(tst_optim, static_loss_scale=128.0)

        for i in range(self.iters):
            ref_loss = self.ref_model(self.x).sum()
            ref_optim.backward(ref_loss)
            ref_optim.step()

            tst_loss = self.tst_model(self.x).sum()
            tst_optim.backward(tst_loss)
            tst_optim.step()

            max_abs_diff, max_rel_diff = self.get_max_diff(self.ref_model.parameters(), self.tst_model.parameters())
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_parameter_groups(self):

        ref_groups = [{'params': [self.ref_model.weight]},{'params': [self.ref_model.bias]}]
        ref_optim = torch.optim.Adam(ref_groups)
        ref_optim = apex.fp16_utils.FP16_Optimizer(ref_optim, verbose=False)

        tst_groups = [{'params': [self.tst_model.weight]},{'params': [self.tst_model.bias]}]
        tst_optim = apex.optimizers.FusedAdam(tst_groups)
        tst_optim = apex.optimizers.FP16_Optimizer(tst_optim)

        for i in range(self.iters):
            ref_loss = self.ref_model(self.x).sum()
            ref_optim.backward(ref_loss)
            ref_optim.step()

            tst_loss = self.tst_model(self.x).sum()
            tst_optim.backward(tst_loss)
            tst_optim.step()

            max_abs_diff, max_rel_diff = self.get_max_diff(self.ref_model.parameters(), self.tst_model.parameters())
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_grad_clip(self):
        ref_optim = torch.optim.Adam(self.ref_model.parameters())
        ref_optim = apex.fp16_utils.FP16_Optimizer(ref_optim, verbose=False)

        tst_optim = apex.optimizers.FusedAdam(self.tst_model.parameters(), max_grad_norm=0.01)
        tst_optim = apex.optimizers.FP16_Optimizer(tst_optim)

        for i in range(self.iters):
            ref_loss = self.ref_model(self.x).sum()
            ref_optim.backward(ref_loss)
            ref_optim.clip_master_grads(0.01)
            ref_optim.step()

            tst_loss = self.tst_model(self.x).sum()
            tst_optim.backward(tst_loss)
            tst_optim.step()

            max_abs_diff, max_rel_diff = self.get_max_diff(self.ref_model.parameters(), self.tst_model.parameters())
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('Not support grad being None')
    def test_grad_None(self):
        self.fail()

    @unittest.skip('Not support same weight decay as pytorch')
    def test_weight_decay(self):
        self.fail()

    @unittest.skip('Not support empty parameter groups')
    def test_group_empty(self):
        self.fail()

if __name__ == '__main__':
    script_path = os.path.dirname(os.path.realpath(__file__))
    unittest.main()