main_reducer.py 17.2 KB
Newer Older
Christian Sarofeen's avatar
Christian Sarofeen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
import os
import shutil
import time

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

import numpy as np

try:
    from apex.parallel import Reducer
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
45
                    metavar='N', help='mini-batch size per process (default: 256)')
Christian Sarofeen's avatar
Christian Sarofeen committed
46
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
47
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
Christian Sarofeen's avatar
Christian Sarofeen committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')

parser.add_argument("--local_rank", default=0, type=int)
jjsjann123's avatar
jjsjann123 committed
69
70
parser.add_argument('--sync_bn', action='store_true',
                    help='enabling apex sync BN.')
Christian Sarofeen's avatar
Christian Sarofeen committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

cudnn.benchmark = True

def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

best_prec1 = 0
args = parser.parse_args()
def main():
    global best_prec1, args

    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

    args.gpu = 0
    args.world_size = 1
102

Christian Sarofeen's avatar
Christian Sarofeen committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    if args.distributed:
        args.gpu = args.local_rank % torch.cuda.device_count()
        torch.cuda.set_device(args.gpu)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

jjsjann123's avatar
jjsjann123 committed
121
122
123
124
125
    if args.sync_bn:
        import apex
        print("using apex synced BN")
        model = apex.parallel.convert_syncbn_model(model)

Christian Sarofeen's avatar
Christian Sarofeen committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    model = model.cuda()
    if args.fp16:
        model = network_to_half(model)
    if args.distributed:
        global reducer
        reducer = Reducer(model)

    global model_params, master_params
    if args.fp16:
        model_params, master_params = prep_param_lists(model)
    else:
        master_params = list(model.parameters())

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

142
143
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
Christian Sarofeen's avatar
Christian Sarofeen committed
144
145
146
147
    optimizer = torch.optim.SGD(master_params, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

148
    # Optionally resume from a checkpoint
Christian Sarofeen's avatar
Christian Sarofeen committed
149
    if args.resume:
150
151
152
153
154
155
156
157
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
158
159
160
161
                if args.fp16:
                    saved_master_params = checkpoint['master_params']
                    for master, saved in zip(master_params, saved_master_params):
                        master.data.copy_(saved.data) 
162
163
164
165
166
167
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
Christian Sarofeen's avatar
Christian Sarofeen committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
        val_size = 320 # I chose this value arbitrarily, we can adjust.
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
            # transforms.ToTensor(), Too slow
            # normalize,
        ]))
188
189
190
191
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
Christian Sarofeen's avatar
Christian Sarofeen committed
192

193
194
    train_sampler = None
    val_sampler = None
Christian Sarofeen's avatar
Christian Sarofeen committed
195
196
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
197
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
Christian Sarofeen's avatar
Christian Sarofeen committed
198
199
200
201
202
203

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)

    val_loader = torch.utils.data.DataLoader(
204
        val_dataset,
Christian Sarofeen's avatar
Christian Sarofeen committed
205
206
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True,
207
        sampler=val_sampler,
Christian Sarofeen's avatar
Christian Sarofeen committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        collate_fn=fast_collate)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        if args.local_rank == 0:
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
229
230
231
232
233
234
235
236
237
238
239
240
241
            # Use local scope to avoid dangling references
            def create_and_save_checkpoint():
                checkpoint_dict = {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_prec1': best_prec1,
                    'optimizer' : optimizer.state_dict(),
                }
                if args.fp16:
                    checkpoint_dict['master_params'] = master_params
                save_checkpoint(checkpoint_dict, is_best)
            create_and_save_checkpoint()
Christian Sarofeen's avatar
Christian Sarofeen committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
        if args.fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
262
263
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
Christian Sarofeen's avatar
Christian Sarofeen committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
            if args.fp16:
                self.next_input = self.next_input.half()
            else:
                self.next_input = self.next_input.float()
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

295
296
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

Christian Sarofeen's avatar
Christian Sarofeen committed
297
298
299
300
301
302
303
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
ptrblck's avatar
ptrblck committed
304
305
        output = model(input)
        loss = criterion(output, target)
Christian Sarofeen's avatar
Christian Sarofeen committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        loss = loss*args.static_loss_scale
        # compute gradient and do SGD step
        if args.fp16:
            model.zero_grad()
            loss.backward()
326
327
            if args.distributed:
                reducer.reduce()
Christian Sarofeen's avatar
Christian Sarofeen committed
328
329
330
331
332
333
334
335
336
            model_grads_to_master_grads(model_params, master_params)
            if args.static_loss_scale != 1:
                for param in master_params:
                    param.grad.data = param.grad.data/args.static_loss_scale
            optimizer.step()
            master_params_to_model_params(model_params, master_params)
        else:
            optimizer.zero_grad()
            loss.backward()
337
338
            if args.distributed:
                reducer.reduce()
Christian Sarofeen's avatar
Christian Sarofeen committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            optimizer.step()

        torch.cuda.synchronize()
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Speed {3:.3f} ({4:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                   epoch, i, len(train_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time,
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        # compute output
        with torch.no_grad():
ptrblck's avatar
ptrblck committed
382
383
            output = model(input)
            loss = criterion(output, target)
Christian Sarofeen's avatar
Christian Sarofeen committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if args.local_rank == 0 and i % args.print_freq == 0:
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Speed {2:.3f} ({3:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                   i, len(val_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time, loss=losses,
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)

    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))

Christian Sarofeen's avatar
Christian Sarofeen committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
    rt /= args.world_size
    return rt

if __name__ == '__main__':
    main()