welford.cu 46.9 KB
Newer Older
jjsjann123's avatar
jjsjann123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>


#include <cuda.h>
#include <cuda_runtime.h>


#include <vector>


__device__ __forceinline__ int lastpow2(int n)
{
  int out = 1 << (31 - __clz(n));
Jie's avatar
Jie committed
17
  if(n == out)
jjsjann123's avatar
jjsjann123 committed
18
19
20
21
22
    out >>= 1;
  return out;
}

__host__ __forceinline__ int h_next_pow2(unsigned int n) {
Jie's avatar
Jie committed
23
    unsigned int old = n;
jjsjann123's avatar
jjsjann123 committed
24
25
26
27
28
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
Jie's avatar
Jie committed
29
    return n == old? n : n + 1;
jjsjann123's avatar
jjsjann123 committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
}

__host__ __forceinline__ int h_last_pow2(unsigned int n) {
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
    return n - (n >> 1);
}


#define WARP_SIZE 32

template<typename T>
__device__ __forceinline__ T warp_reduce_sum(T val)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1)
    val = val + __shfl_down_sync(0xffffffff, val, i);
  return val;
}

template<typename T>
__device__ __forceinline__ T reduce_block(T *x, T val)
{
  int tid = threadIdx.y*blockDim.x + threadIdx.x;
  int blockSize = blockDim.x * blockDim.y;

  if (blockSize > 32) {
    val = warp_reduce_sum(val);
    if (tid % WARP_SIZE == 0)
      x[tid/WARP_SIZE] = val;

    __syncthreads();

    val = (tid < blockSize / WARP_SIZE? x[tid%WARP_SIZE] : T(0));
  }

  if(tid/WARP_SIZE==0) val = warp_reduce_sum(val);

  return val;
}

Jie's avatar
Jie committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#define ELEMENTS_PER_ITER 4 // enables concurrency within each thread to hide latency
#define ELEMENTS_PER_THREAD 16
#define OPTIMAL_TILE_W 32
#define MAX_H_BLOCK 128
#define MAX_BLOCK_SIZE 512

__host__ int div_ru(int x, int y) {
  return h_last_pow2(1 + (x-1)/y);
}

__host__ void flexible_launch_configs(
      const int reduction,
      const int stride,
      dim3 &block,
      dim3 &grid,
      const bool coop_flag = false) {
  int block_x = std::min(h_last_pow2(stride), OPTIMAL_TILE_W);
  int block_y = std::min(h_last_pow2(div_ru(reduction , ELEMENTS_PER_THREAD)),
                         MAX_BLOCK_SIZE / block_x);
  if (block_x * block_y != MAX_BLOCK_SIZE) {
    block_x = std::min(h_last_pow2(stride), MAX_BLOCK_SIZE / block_y);
  }

  int grid_x = div_ru(stride, block_x);
  int grid_y = std::min(div_ru(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
  if (coop_flag) {
    // it's not worth having a grid reduction if the reduction dimension is not big enough
    grid_y = grid_y < 8 ? 1 : grid_y;
  }

  block.x = block_x;
  block.y = block_y;
  block.z = 1;
  grid.x = grid_x;
  grid.y = grid_y;
  grid.z = 1;
}

template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
                                                      T& mean,
                                                      T& m2n,
                                                      const C& num_new,
                                                      const T& mean_new,
                                                      const T& m2n_new) {
      T factor = T(1.0) / max(1, (count + num_new));
      T delta0 = mean - mean_new;
      mean = (mean_new * num_new + mean * count) * factor;
      m2n += m2n_new + delta0 * delta0 * num_new * count * factor;
      count += num_new;
}
jjsjann123's avatar
jjsjann123 committed
125
126
127
128
129
130
131
132
133

template<typename T>
__device__ __forceinline__ void warp_reduce_mean_m2n(T &mean, T &m2n, int &num)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1) {
    auto num_new = __shfl_down_sync(0xffffffff, num, i);
    auto mean_new = __shfl_down_sync(0xffffffff, mean, i);
    auto m2n_new = __shfl_down_sync(0xffffffff, m2n, i);
Jie's avatar
Jie committed
134
    welford_merge_element(num, mean, m2n, num_new, mean_new, m2n_new);
jjsjann123's avatar
jjsjann123 committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  }
}

template <typename T>
__device__ void welford_reduce_mean_m2n(
      T* __restrict__ x,
      int* __restrict__ count,
      T &mean,
      T &m2n,
      int &num,
      int block_size,
      int thread_id)
{
  int lane = thread_id % WARP_SIZE;
  int wid = thread_id / WARP_SIZE;

  if (block_size > 32) {
    warp_reduce_mean_m2n(mean, m2n, num);
    if (lane == 0) {
      x[wid*2] = mean;
      x[wid*2+1] = m2n;
      count[wid] = num;
    }
    __syncthreads();

    if (wid == 0) {
      mean = (thread_id < block_size / WARP_SIZE)? x[lane*2] : T(0);
      m2n = (thread_id < block_size / WARP_SIZE)? x[lane*2+1] : T(0);
      num = (thread_id < block_size / WARP_SIZE)? count[lane] : int(0);
    }
  }

  if (wid==0) warp_reduce_mean_m2n(mean, m2n, num);

  return;
}

// return spatial size for NC+ Tensors
__host__ int get_tensor_spatial_size(const at::Tensor& input)
{
  auto space_size = input.size(2);
  for (int i = 3; i < input.ndimension(); i++) {
    space_size *= input.size(i);
  }
  return space_size;
}

// promote accumulation scalar type. promote half to float.
__host__ at::ScalarType promote_scalartype(const at::Tensor& input)
{
  return input.type().scalarType() == at::ScalarType::Half ?
           at::ScalarType::Float : input.type().scalarType();
}

// return single element size, optional accumulation type promotion.
__host__ size_t get_element_data_size(const at::Tensor& input, bool accumulation = false)
{
  auto scalar_type = accumulation ? promote_scalartype(input) : input.type().scalarType();
  return at::elementSize(scalar_type);
}

Jie's avatar
Jie committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
                                                             T& mean,
                                                             T& m2n,
                                                             C* shmem_count,
                                                             T* shmem_mean,
                                                             T* shmem_m2n) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_mean[address_base] = mean;
  shmem_m2n[address_base] = m2n;
  shmem_count[address_base] = count;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;
      // read shared memory back to register for reduction
      auto num_new = shmem_count[address];
      auto mean_new = shmem_mean[address];
      auto m2n_new = shmem_m2n[address];

      welford_merge_element(count, mean, m2n, num_new, mean_new, m2n_new);

      // last write is not necessary
      shmem_mean[address_base] = mean;
      shmem_m2n[address_base] = m2n;
      shmem_count[address_base] = count;
    }
  }
}

template<typename T>
__device__ __forceinline__ void merge_block_vertical(T& sum_dy,
                                                     T& sum_dy_xmu,
                                                     T* shmem_sum_dy,
                                                     T* shmem_sum_dy_xmu) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_sum_dy[address_base] = sum_dy;
  shmem_sum_dy_xmu[address_base] = sum_dy_xmu;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;

      sum_dy += shmem_sum_dy[address];
      sum_dy_xmu += shmem_sum_dy_xmu[address];

      // last write is not necessary
      shmem_sum_dy[address_base] = sum_dy;
      shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
    }
  }
}

jjsjann123's avatar
jjsjann123 committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

// welford kernel calculating mean/biased_variance/unbiased_variance
template <typename scalar_t, typename accscalar_t, typename outscalar_t>
__global__ void welford_kernel(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      const int bs,
      const int fs,
      const int ss) {
  int block_size = blockDim.x * blockDim.y;
  int count = 0;
  accscalar_t x_mean = accscalar_t(0);
  accscalar_t m_2_n = accscalar_t(0);

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    // sequential welford
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      count++;
      auto x_n = static_cast<accscalar_t>(input[offset+input_base]);
Jie's avatar
Jie committed
278
279
280
      auto d = x_n - x_mean;
      x_mean += d / count;
      m_2_n += d * (x_n - x_mean);
jjsjann123's avatar
jjsjann123 committed
281
282
283
    }
  }

Jie's avatar
Jie committed
284
285
286
  static __shared__ int s_mem[160];
  accscalar_t* s_mem_ac = (accscalar_t*) &s_mem[32];

jjsjann123's avatar
jjsjann123 committed
287
288
289
290
291
292
293
294
295
296
297
298
299
  welford_reduce_mean_m2n<accscalar_t>(s_mem_ac, s_mem, x_mean, m_2_n, count, block_size, thread_id);

  if (thread_id == 0) {
    out_mean[blockIdx.x] = static_cast<outscalar_t>(x_mean);
    out_var_biased[blockIdx.x] = static_cast<outscalar_t>(m_2_n/count);
  }
}

// elementwise BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_forward_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
300
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
301
302
303
304
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int ss,
Jie's avatar
Jie committed
305
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
306
  auto m_c = mean[blockIdx.x];
Jie's avatar
Jie committed
307
  auto inv_std_c = inv_std[blockIdx.x];
308
309
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
310

Jie's avatar
Jie committed
311
312
313
314
315
  for (int batch_offset = blockIdx.y*blockDim.y + threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
      out[address_base+offset] = static_cast<scalar_t>(w_c * (static_cast<accscalar_t>(input[address_base+offset]) - m_c ) * inv_std_c + s_c);
    }
jjsjann123's avatar
jjsjann123 committed
316
317
318
319
320
321
322
323
324
325
326
327
  }
}

// Backward BN kernel, calculates grad_bias, grad_weight as well as intermediate
// results to calculating grad_input.
// Breaking the grad_input to two step to support sync BN, which requires all
// reduce of the intermediate results across processes.
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void reduce_bn_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
328
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
329
330
331
332
333
334
      accscalar_t* __restrict__ mean_dy,
      accscalar_t* __restrict__ mean_dy_xmu,
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      const int bs,
      const int fs,
Jie's avatar
Jie committed
335
      const int ss) {
jjsjann123's avatar
jjsjann123 committed
336
337
338
339
340
341
  static __shared__ int s_mem[64];
  int total_item_num = bs * ss;

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  auto r_mean = mean[blockIdx.x];
Jie's avatar
Jie committed
342
  auto factor = inv_std[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

  // Kahan sum
  accscalar_t sum_dy = 0.0;
  accscalar_t sum_dy_xmu = 0.0;
  accscalar_t sum_dy_c = 0.0;
  accscalar_t sum_dy_xmu_c = 0.0;
  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      auto e_grad = static_cast<accscalar_t>(grad_output[offset+input_base]);
      auto e_input = static_cast<accscalar_t>(input[offset+input_base]);
      // calculating sum_dy
      auto sum_dy_y = e_grad - sum_dy_c;
      auto sum_dy_t = sum_dy + sum_dy_y;
      sum_dy_c = (sum_dy_t - sum_dy) - sum_dy_y;
      sum_dy = sum_dy_t;

      // calculating sum_dy_xmu
      auto sum_dy_xmu_y = e_grad * (e_input - r_mean) - sum_dy_xmu_c;
      auto sum_dy_xmu_t = sum_dy_xmu + sum_dy_xmu_y;
      sum_dy_xmu_c = (sum_dy_xmu_t - sum_dy_xmu) - sum_dy_xmu_y;
      sum_dy_xmu = sum_dy_xmu_t;
    }
  }

  sum_dy = reduce_block((accscalar_t*)s_mem, sum_dy);
  __syncthreads();
  sum_dy_xmu = reduce_block((accscalar_t*)s_mem, sum_dy_xmu);
Jie's avatar
Jie committed
371

jjsjann123's avatar
jjsjann123 committed
372
  if (thread_id == 0) {
373
374
375
376
377
378
    if (grad_bias != NULL) {
      grad_bias[blockIdx.x] = static_cast<layerscalar_t>(sum_dy);
    }
    if (grad_weight != NULL) {
      grad_weight[blockIdx.x] = static_cast<layerscalar_t>(sum_dy_xmu * factor);
    }
jjsjann123's avatar
jjsjann123 committed
379
380
381
382
383
384
385
386
387
388
389
    mean_dy[blockIdx.x] = sum_dy / total_item_num;
    mean_dy_xmu[blockIdx.x] = sum_dy_xmu / total_item_num;
  }
}

// elementwise backward BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_backward_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
390
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
391
392
393
394
395
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ mean_dy,
      const accscalar_t* __restrict__ mean_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const int ss,
Jie's avatar
Jie committed
396
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
397
398
  auto m_c = static_cast<accscalar_t>(mean[blockIdx.x]);
  auto m_dy_c = static_cast<accscalar_t>(mean_dy[blockIdx.x]);
Jie's avatar
Jie committed
399
  auto factor_1_c = inv_std[blockIdx.x];
400
  auto factor_2_c = (weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x])) * factor_1_c;
Jie's avatar
Jie committed
401
  factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
402

Jie's avatar
Jie committed
403
404
405
  for (int batch_offset = blockIdx.y*blockDim.y+threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
Jie's avatar
Jie committed
406
      grad_input[address_base+offset] = (static_cast<accscalar_t>(grad_output[address_base+offset]) - m_dy_c - (static_cast<accscalar_t>(input[address_base+offset]) - m_c) * factor_1_c) * factor_2_c;
Jie's avatar
Jie committed
407
    }
jjsjann123's avatar
jjsjann123 committed
408
409
410
  }
}

Jie's avatar
Jie committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
template
   <typename scalar_t,
    typename accscalar_t,
    typename outscalar_t,
    int PARALLEL_LOADS>
__global__ void
welford_kernel_c_last(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {
  // hide latency with concurrency
  accscalar_t x_mean[PARALLEL_LOADS];
  accscalar_t m_2_n[PARALLEL_LOADS];
  int count[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    x_mean[i] = accscalar_t(0);
    m_2_n[i] = accscalar_t(0);
    count[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_math[PARALLEL_LOADS];
    accscalar_t x_count_inv[PARALLEL_LOADS];
    accscalar_t is_valid[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_math[j] = input[address_base];
        count[j]++;
        x_count_inv[j] = accscalar_t(1) / count[j];
        is_valid[j] = accscalar_t(1);
      } else {
        x_math[j] = accscalar_t(0);
        x_count_inv[j] = accscalar_t(0);
        is_valid[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate mean/m2n with welford
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      accscalar_t delta0 = x_math[j] - x_mean[j];
      x_mean[j] += delta0 * x_count_inv[j];
      accscalar_t delta1 = x_math[j] - x_mean[j];
      m_2_n[j] += delta0 * delta1 * is_valid[j];
    }
  }

  // thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
  }

  // release x_mean / m_2_n
  auto mean_th = x_mean[0];
  auto m2_th = m_2_n[0];
  auto count_th = count[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
  static __shared__ int shmem_count[MAX_BLOCK_SIZE];

  welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_mean = staging_data;
    volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
    volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_mean[address_base] = mean_th;
      staging_m2n[address_base] = m2_th;
      staging_count[address_base] = count_th;
    }

    __threadfence();
Jie's avatar
Jie committed
515
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      count_th = 0;
      mean_th = accscalar_t(0.0);
      m2_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        int num_new = c_offset < stride ? staging_count[address_base] : 0;
        accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
        accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);

        welford_merge_element(count_th, mean_th, m2_th, num_new, mean_new, m2n_new);
      }

      welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
      if (threadIdx.y == 0 && c_offset < stride) {
        out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
        out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
      out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
    }
  }
}

// parallel welford kernel to further reduce mean / biased_var
// into mean / unbiased_var / inv_std across multiple processes.
template <typename scalar_t>
jjsjann123's avatar
jjsjann123 committed
558
559
560
561
562
__global__ void welford_kernel_parallel(
      const scalar_t* __restrict__ mean,
      const scalar_t* __restrict__ var_biased,
      scalar_t* __restrict__ out_mean,
      scalar_t* __restrict__ out_var,
Jie's avatar
Jie committed
563
564
565
566
      scalar_t* __restrict__ inv_std,
      const int world_size,
      const int feature_size,
      const float eps,
jjsjann123's avatar
jjsjann123 committed
567
568
      const int numel) {

Jie's avatar
Jie committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < feature_size; i += gridDim.x * blockDim.x) {
    // load data;
    int address = i;
    scalar_t x_mean = 0;
    scalar_t m_2_n = 0;
    int count = 0;
    for (int j = 0; j < world_size; j++) {
      welford_merge_element(count, x_mean, m_2_n, numel, mean[address], var_biased[address]*numel);
      address += feature_size;
    }
    out_mean[i] = x_mean;
    out_var[i] = m_2_n/ (count - 1);
    inv_std[i] = scalar_t(1) / sqrt(m_2_n/count + eps);
  }
}
jjsjann123's avatar
jjsjann123 committed
584

Jie's avatar
Jie committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_forward_c_last_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
610
611
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);
Jie's avatar
Jie committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        out[address_base] = static_cast<scalar_t>(
            w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c
          );
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
630

Jie's avatar
Jie committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// batchnorm backward kernel for c last tensor
template
   <typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void reduce_bn_c_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      accscalar_t* __restrict__ mean_dy,
      accscalar_t* __restrict__ mean_dy_xmu,
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {

  // hide latency with concurrency
  accscalar_t sum_dy[PARALLEL_LOADS];
  accscalar_t sum_dy_xmu[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    sum_dy[i] = accscalar_t(0);
    sum_dy_xmu[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  auto r_mean = mean[c_offset];
  auto factor = inv_std[c_offset];

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_input[PARALLEL_LOADS];
    accscalar_t x_grad_output[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_input[j] = input[address_base];
        x_grad_output[j] = grad_output[address_base];
      } else {
        x_input[j] = accscalar_t(0);
        x_grad_output[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
jjsjann123's avatar
jjsjann123 committed
693

Jie's avatar
Jie committed
694
695
696
697
698
699
700
    // calculate sum_dy / sum_dy_xmu
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      sum_dy[j] += x_grad_output[j];
      sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
    }
  }
jjsjann123's avatar
jjsjann123 committed
701

Jie's avatar
Jie committed
702
703
704
705
706
707
  // thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    sum_dy[0] += sum_dy[j];
    sum_dy_xmu[0] += sum_dy_xmu[j];
  }
jjsjann123's avatar
jjsjann123 committed
708

Jie's avatar
Jie committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
  // release array of registers
  auto sum_dy_th = sum_dy[0];
  auto sum_dy_xmu_th = sum_dy_xmu[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];

  merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_sum_dy = staging_data;
    volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_sum_dy[address_base] = sum_dy_th;
      staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
    }

    __threadfence();
Jie's avatar
Jie committed
732
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      sum_dy_th = accscalar_t(0.0);
      sum_dy_xmu_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
        sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
      }

      merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
      if (threadIdx.y == 0 && c_offset < stride) {
756
757
758
759
760
761
        if (grad_bias != NULL) {
          grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
        }
        if (grad_weight != NULL) {
          grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
        }
Jie's avatar
Jie committed
762
763
764
765
766
767
        mean_dy[c_offset] = sum_dy_th / reduction_size;
        mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
768
769
770
771
772
773
      if (grad_bias != NULL) {
        grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
      }
      if (grad_weight != NULL) {
        grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
      }
Jie's avatar
Jie committed
774
775
776
      mean_dy[c_offset] = sum_dy_th / reduction_size;
      mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
    }
jjsjann123's avatar
jjsjann123 committed
777
778
  }
}
Jie's avatar
Jie committed
779

Jie's avatar
Jie committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ mean_dy,
      const accscalar_t* __restrict__ mean_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto m_dy_c = mean_dy[c_offset];
  auto factor_1_c = inv_std[c_offset];
808
  auto factor_2_c = (weight == NULL? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
Jie's avatar
Jie committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
  factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[c_offset];

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        grad_input[address_base] = static_cast<scalar_t>(
            (static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
            (static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
            * factor_2_c);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
829
830
831
832
833
834
835
836
837
838
839

std::vector<at::Tensor> welford_mean_var_CUDA(const at::Tensor input) {
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto space_size = get_tensor_spatial_size(input);
  auto scalar_type = promote_scalartype(input);

  at::Tensor out_var_biased = at::empty({feature_size}, input.options().dtype(scalar_type));
  at::Tensor out_mean = at::empty({feature_size}, input.options().dtype(scalar_type));

Jie's avatar
Jie committed
840
841
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE / 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE / block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);

  auto stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "welford_mean_var_kernel", ([&] {
    using accscalar_t = at::acc_type<scalar_t, true>;
    welford_kernel<scalar_t, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
        input.data<scalar_t>(),
        out_mean.data<accscalar_t>(),
        out_var_biased.data<accscalar_t>(),
        batch_size,
        feature_size,
        space_size);
  }));

Jie's avatar
Jie committed
858
  return {out_mean, out_var_biased};
jjsjann123's avatar
jjsjann123 committed
859
860
861
862
863
}

at::Tensor batchnorm_forward_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
864
    const at::Tensor inv_std,
865
866
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
jjsjann123's avatar
jjsjann123 committed
867
868
869
870
871
872
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);
  at::Tensor out = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
873
874
875
876
877
878
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);
jjsjann123's avatar
jjsjann123 committed
879
880
  auto stream = at::cuda::getCurrentCUDAStream();

881
882
883
  if (input.type().scalarType() == at::ScalarType::Half
      && weight.has_value() &&
      weight.value().type().scalarType() == at::ScalarType::Float) {
jjsjann123's avatar
jjsjann123 committed
884
885
886
887
888
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_forward_kernel<scalar_t, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
889
          inv_std.data<accscalar_t>(),
890
891
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().data<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
892
893
          out.data<scalar_t>(),
          space_size,
Jie's avatar
Jie committed
894
          batch_size);
jjsjann123's avatar
jjsjann123 committed
895
896
    }));
  } else {
897
898
899
900
    if (weight.has_value()) {
      AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
          "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
jjsjann123's avatar
jjsjann123 committed
901
902
903
904
905
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_forward_kernel<scalar_t, accscalar_t, scalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
906
          inv_std.data<accscalar_t>(),
907
908
          weight.has_value() ? weight.value().data<scalar_t>() : NULL,
          shift.has_value() ? shift.value().data<scalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
909
910
          out.data<scalar_t>(),
          space_size,
Jie's avatar
Jie committed
911
          batch_size);
jjsjann123's avatar
jjsjann123 committed
912
913
914
915
916
917
918
919
920
    }));
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
921
    const at::Tensor inv_std,
922
    const at::optional<at::Tensor> weight)
jjsjann123's avatar
jjsjann123 committed
923
924
925
926
927
928
929
930
{
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto scalar_type = promote_scalartype(input);

  at::Tensor mean_dy = at::empty({feature_size}, mean.options());
  at::Tensor mean_dy_xmu = at::empty({feature_size}, mean.options());
931
932
933
934
935
936
937
938
939
940

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({feature_size}, weight.value().options());
    grad_bias = at::empty({feature_size}, weight.value().options());
  } else {
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
jjsjann123's avatar
jjsjann123 committed
941
942
943

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
944
945
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE/ 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE/ block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
946
947
948
949
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);
  auto stream = at::cuda::getCurrentCUDAStream();

950
951
952
  if (input.type().scalarType() == at::ScalarType::Half
      && weight.has_value() &&
      weight.value().type().scalarType() == at::ScalarType::Float) {
jjsjann123's avatar
jjsjann123 committed
953
954
955
956
957
958
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward_reduce", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      reduce_bn_kernel<scalar_t, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          grad_output.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
959
          inv_std.data<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
960
961
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
962
963
          weight.has_value() ? grad_weight.data<accscalar_t>() : NULL,
          weight.has_value() ? grad_bias.data<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
964
965
          batch_size,
          feature_size,
Jie's avatar
Jie committed
966
          space_size);
jjsjann123's avatar
jjsjann123 committed
967
968
    }));
  } else {
969
970
971
972
    if (weight.has_value()) {
        AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
            "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
jjsjann123's avatar
jjsjann123 committed
973
974
975
976
977
978
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward_reduce", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      reduce_bn_kernel<scalar_t, accscalar_t, scalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          grad_output.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
979
          inv_std.data<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
980
981
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
982
983
          weight.has_value() ? grad_weight.data<scalar_t>() : NULL,
          weight.has_value() ? grad_bias.data<scalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
984
985
          batch_size,
          feature_size,
Jie's avatar
Jie committed
986
          space_size);
jjsjann123's avatar
jjsjann123 committed
987
988
    }));
  }
Jie's avatar
Jie committed
989

jjsjann123's avatar
jjsjann123 committed
990
991
992
993
994
995
996
  return {mean_dy, mean_dy_xmu, grad_weight, grad_bias};
}

at::Tensor batchnorm_backward_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
997
    const at::Tensor inv_std,
998
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
999
    const at::Tensor mean_dy,
Jie's avatar
Jie committed
1000
    const at::Tensor mean_dy_xmu) {
jjsjann123's avatar
jjsjann123 committed
1001
1002
1003
1004
1005
1006
1007
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  at::Tensor grad_input = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1008
1009
1010
1011
1012
1013
1014
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);

jjsjann123's avatar
jjsjann123 committed
1015
1016
  auto stream = at::cuda::getCurrentCUDAStream();

1017
1018
1019
  if (input.type().scalarType() == at::ScalarType::Half
      && weight.has_value() &&
      weight.value().type().scalarType() == at::ScalarType::Float) {
jjsjann123's avatar
jjsjann123 committed
1020
1021
1022
1023
1024
1025
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_backward_kernel<scalar_t, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t>(),
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
1026
          inv_std.data<accscalar_t>(),
1027
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1028
1029
1030
1031
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
          grad_input.data<scalar_t>(),
          space_size,
Jie's avatar
Jie committed
1032
          batch_size);
jjsjann123's avatar
jjsjann123 committed
1033
1034
    }));
  } else {
1035
1036
1037
1038
    if (weight.has_value()) {
      AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
          "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
jjsjann123's avatar
jjsjann123 committed
1039
1040
1041
1042
1043
1044
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_backward_kernel<scalar_t, accscalar_t, scalar_t><<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t>(),
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
1045
          inv_std.data<accscalar_t>(),
1046
          weight.has_value() ? weight.value().data<scalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1047
1048
1049
1050
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
          grad_input.data<scalar_t>(),
          space_size,
Jie's avatar
Jie committed
1051
          batch_size);
jjsjann123's avatar
jjsjann123 committed
1052
1053
    }));
  }
Jie's avatar
Jie committed
1054

jjsjann123's avatar
jjsjann123 committed
1055
1056
1057
  return grad_input;
}

Jie's avatar
Jie committed
1058
1059
1060
1061
1062
1063
std::vector<at::Tensor> welford_parallel_CUDA(const at::Tensor mean_feature_nodes,
                                              const at::Tensor var_biased,
                                              int numel,
                                              const float eps) {
  const auto world_size = mean_feature_nodes.size(0);
  const auto feature_size = mean_feature_nodes.size(1);
jjsjann123's avatar
jjsjann123 committed
1064
1065

  at::Tensor out_var = at::empty({feature_size}, var_biased.options());
Jie's avatar
Jie committed
1066
  at::Tensor inv_std = at::empty_like(out_var);
jjsjann123's avatar
jjsjann123 committed
1067
1068
1069
  at::Tensor out_mean = at::empty_like(out_var);

  // TODO(jie): tile this for memory coalescing!
Jie's avatar
Jie committed
1070
1071
1072
  const int block = std::min(h_last_pow2(feature_size), MAX_BLOCK_SIZE);
  const int grid = std::max<int>(1, feature_size / block);

jjsjann123's avatar
jjsjann123 committed
1073
1074
1075
  auto stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(mean_feature_nodes.type(), "welford_parallel_kernel", ([&] {
Jie's avatar
Jie committed
1076
    welford_kernel_parallel<scalar_t><<<grid, block, 0, stream>>>(
jjsjann123's avatar
jjsjann123 committed
1077
1078
1079
1080
        mean_feature_nodes.data<scalar_t>(),
        var_biased.data<scalar_t>(),
        out_mean.data<scalar_t>(),
        out_var.data<scalar_t>(),
Jie's avatar
Jie committed
1081
        inv_std.data<scalar_t>(),
jjsjann123's avatar
jjsjann123 committed
1082
1083
        world_size,
        feature_size,
Jie's avatar
Jie committed
1084
        eps,
jjsjann123's avatar
jjsjann123 committed
1085
1086
1087
        numel);
  }));

Jie's avatar
Jie committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
  return {out_mean, out_var, inv_std};
}

std::vector<at::Tensor> welford_mean_var_c_last_CUDA(const at::Tensor input) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  auto scalar_type = promote_scalartype(input);
  auto option = input.options().dtype(scalar_type);

  at::Tensor out_var_biased = at::empty({stride}, option);
  at::Tensor out_mean = at::empty({stride}, option);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({4*stride*grid.y}, option);
    semaphores = at::zeros({grid.x}, input.options().dtype(at::ScalarType::Int));
  }

  auto stream = at::cuda::getCurrentCUDAStream();


  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "welford_mean_var_c_last", ([&] {
    using accscalar_t = at::acc_type<scalar_t, true>;
    accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
    int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
    welford_kernel_c_last<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
        <<<grid, block, 0, stream>>>(
        input.data<scalar_t>(),
        out_mean.data<accscalar_t>(),
        out_var_biased.data<accscalar_t>(),
        staging_data_ptr,
        semaphores_ptr,
        reduction_size,
        stride);
  }));

  return {out_mean, out_var_biased};
}

at::Tensor batchnorm_forward_c_last_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1137
1138
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
Jie's avatar
Jie committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  if (input.type().scalarType() == at::ScalarType::Half
1151
      && weight.has_value() && weight.value().type().scalarType() == at::ScalarType::Float) {
Jie's avatar
Jie committed
1152
1153
1154
1155
1156
1157
1158
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_forward_c_last_kernel<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1159
1160
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().data<accscalar_t>(): NULL,
Jie's avatar
Jie committed
1161
1162
1163
1164
1165
          out.data<scalar_t>(),
          reduction_size,
          stride);
    }));
  } else {
1166
1167
1168
1169
    if (weight.has_value()) {
      AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
          "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
Jie's avatar
Jie committed
1170
1171
1172
1173
1174
1175
1176
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_forward_c_last_kernel<scalar_t, accscalar_t, scalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1177
1178
          weight.has_value() ? weight.value().data<scalar_t>() : NULL,
          shift.has_value() ? shift.value().data<scalar_t>(): NULL,
Jie's avatar
Jie committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
          out.data<scalar_t>(),
          reduction_size,
          stride);
    }));
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1192
    const at::optional<at::Tensor> weight) {
Jie's avatar
Jie committed
1193
1194
1195
1196
1197
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor mean_dy = at::empty({stride}, mean.options());
  at::Tensor mean_dy_xmu = at::empty({stride}, mean.options());
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({stride}, weight.value().options());
    grad_bias = at::empty({stride}, weight.value().options());
  } else {
    // because I cannot return an uninitialized at::Tensor
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
Jie's avatar
Jie committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({2*stride*grid.y}, mean.options());
    semaphores = at::zeros({grid.x}, input.options().dtype(at::ScalarType::Int));
  }
  auto stream = at::cuda::getCurrentCUDAStream();

1222
1223
1224
  if (input.type().scalarType() == at::ScalarType::Half
      && weight.has_value()
      && weight.value().type().scalarType() == at::ScalarType::Float) {
Jie's avatar
Jie committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward_reduce", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
      reduce_bn_c_last_kernel<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          grad_output.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1237
1238
          weight.has_value() ? grad_weight.data<accscalar_t>() : NULL,
          weight.has_value() ?grad_bias.data<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1239
1240
1241
1242
1243
1244
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
    }));
  } else {
1245
1246
1247
1248
    if (weight.has_value()) {
      AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
          "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
Jie's avatar
Jie committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_backward_reduce", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
      reduce_bn_c_last_kernel<scalar_t, accscalar_t, scalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data<scalar_t>(),
          grad_output.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1261
1262
          weight.has_value() ? grad_weight.data<scalar_t>() : NULL,
          weight.has_value() ?grad_bias.data<scalar_t>() : NULL,
Jie's avatar
Jie committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
    }));
  }

  return {mean_dy, mean_dy_xmu, grad_weight, grad_bias};
}

at::Tensor batchnorm_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1278
    const at::optional<at::Tensor> weight,
Jie's avatar
Jie committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    const at::Tensor mean_dy,
    const at::Tensor mean_dy_xmu) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  if (input.type().scalarType() == at::ScalarType::Half
1293
      && weight.has_value() && weight.value().type().scalarType() == at::ScalarType::Float) {
Jie's avatar
Jie committed
1294
1295
1296
1297
1298
1299
1300
1301
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_backward_c_last_kernel<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t>(),
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1302
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1303
1304
1305
1306
1307
1308
1309
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
          grad_input.data<scalar_t>(),
          reduction_size,
          stride);
    }));
  } else {
1310
1311
1312
1313
    if (weight.has_value()) {
      AT_CHECK(input.type().scalarType() == weight.value().type().scalarType(),
          "input.type().scalarType() is not supported with weight.type().scalarType()");
    }
Jie's avatar
Jie committed
1314
1315
1316
1317
1318
1319
1320
1321
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "batchnorm_forward", ([&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batchnorm_backward_c_last_kernel<scalar_t, accscalar_t, scalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t>(),
          input.data<scalar_t>(),
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1322
          weight.has_value() ? weight.value().data<scalar_t>() : NULL,
Jie's avatar
Jie committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
          grad_input.data<scalar_t>(),
          reduction_size,
          stride);
    }));
  }
 
  return grad_input;
jjsjann123's avatar
jjsjann123 committed
1332
}