scaled_masked_softmax_cuda.cu 3.8 KB
Newer Older
Masaki Kozuki's avatar
Masaki Kozuki committed
1
/* coding=utf-8
2
 * Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
Masaki Kozuki's avatar
Masaki Kozuki committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
Hubert Lu's avatar
Hubert Lu committed
21
//#include <cuda_profiler_api.h>
Masaki Kozuki's avatar
Masaki Kozuki committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "scaled_masked_softmax.h"
#include "type_shim.h"

namespace multihead_attn {
namespace fused_softmax {
namespace scaled_masked_softmax {

int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches, int attn_heads){
    return get_batch_per_block(query_seq_len, key_seq_len, batches, attn_heads);
}


torch::Tensor fwd_cuda(
    torch::Tensor const& input,
    torch::Tensor const& mask,
    float scale_factor)
{
  // input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
  const int batches = input.size(0);
  const int pad_batches = mask.size(0);
  const int attn_heads = input.size(1);
  const int query_seq_len = input.size(2);
  const int key_seq_len = input.size(3);
  TORCH_INTERNAL_ASSERT(key_seq_len <= 2048);
  TORCH_INTERNAL_ASSERT(query_seq_len > 1);
  TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches);
  TORCH_INTERNAL_ASSERT(mask.size(1) == 1);
  TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len);
  TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len);

  // Output 
  auto act_options = input.options().requires_grad(false);
  torch::Tensor softmax_results = 
      torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options);

  // Softmax Intermediate Result Ptr
  void* input_ptr = static_cast<void*>(input.data_ptr());
  void* mask_ptr = static_cast<void*>(mask.data_ptr());
  void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr());

  DISPATCH_HALF_AND_BFLOAT(
      input.scalar_type(),
      "dispatch_scaled_masked_softmax_forward",
      dispatch_scaled_masked_softmax_forward<scalar_t, scalar_t, float>(
          reinterpret_cast<scalar_t*>(softmax_results_ptr),
	  reinterpret_cast<const scalar_t*>(input_ptr),
	  reinterpret_cast<const uint8_t*>(mask_ptr),
	  scale_factor,
	  query_seq_len,
	  key_seq_len,
	  batches,
	  attn_heads,
	  pad_batches);
      );
  return softmax_results;
}

torch::Tensor bwd_cuda(
    torch::Tensor const& output_grads_, 
    torch::Tensor const& softmax_results_, 
    float scale_factor)  {
	
  auto output_grads = output_grads_.contiguous();
  auto softmax_results = softmax_results_.contiguous();

  //output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
  const int batches = output_grads.size(0);
  const int attn_heads = output_grads.size(1);
  const int query_seq_len = output_grads.size(2);
  const int key_seq_len = output_grads.size(3);

  void* output_grads_ptr = static_cast<void*>(output_grads.data_ptr());

  //Softmax Grad
  DISPATCH_HALF_AND_BFLOAT(
      output_grads_.scalar_type(),
      "dispatch_scaled_masked_softmax_backward",
      dispatch_scaled_masked_softmax_backward<scalar_t, scalar_t, float>(
          reinterpret_cast<scalar_t*>(output_grads_ptr), 
	  reinterpret_cast<scalar_t*>(output_grads_ptr), 
	  reinterpret_cast<scalar_t const*>(softmax_results.data_ptr()),
	  scale_factor,
	  query_seq_len,
	  key_seq_len,
	  batches,
	  attn_heads);
			   );
  
  //backward pass is completely in-place
  return output_grads;
}
}
}
}