main.py 9.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# coding: utf-8
import argparse
import time
import math
import torch
import torch.nn as nn
import data
import model

try:
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='./data/wikitext-2',
                    help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
                    help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=200,
                    help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=200,
                    help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
                    help='number of layers')
parser.add_argument('--lr', type=float, default=20,
                    help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
                    help='gradient clipping')
parser.add_argument('--epochs', type=int, default=40,
                    help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
                    help='batch size')
parser.add_argument('--bptt', type=int, default=35,
                    help='sequence length')
parser.add_argument('--dropout', type=float, default=0.2,
                    help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
                    help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
                    help='random seed')
parser.add_argument('--cuda', action='store_true',
                    help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
                    help='report interval')
parser.add_argument('--save', type=str,  default='model.pt',
                    help='path to save the final model')
parser.add_argument('--fp16', action='store_true',
                    help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')

args = parser.parse_args()

# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
    if not args.cuda:
        print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if args.fp16 and not args.cuda:
    print("WARNING: --fp16 requires --cuda, ignoring --fp16 option")

###############################################################################
# Load data
###############################################################################

corpus = data.Corpus(args.data)

# Starting from sequential data, batchify arranges the dataset into columns.
# For instance, with the alphabet as the sequence and batch size 4, we'd get
# ┌ a g m s ┐
# │ b h n t │
# │ c i o u │
# │ d j p v │
# │ e k q w │
# └ f l r x ┘.
# These columns are treated as independent by the model, which means that the
# dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
# batch processing.

def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    if args.cuda:
        data = data.cuda()
    return data

eval_batch_size = 10
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, eval_batch_size)

###############################################################################
# Build the model
###############################################################################

ntokens = len(corpus.dictionary)
model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied)

if args.cuda and args.fp16:
    model.type(torch.cuda.HalfTensor)
    model_params, master_params = prep_param_lists(model)
elif args.cuda:
    model.cuda()
criterion = nn.CrossEntropyLoss()

###############################################################################
# Training code
###############################################################################


def repackage_hidden(h):
ptrblck's avatar
ptrblck committed
117
    """Detaches hidden states from their history."""
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    if torch.is_tensor(h):
        return h.detach()
    else:
        return tuple(repackage_hidden(v) for v in h)


# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.

134
def get_batch(source, i):
135
    seq_len = min(args.bptt, len(source) - 1 - i)
ptrblck's avatar
ptrblck committed
136
137
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].view(-1)
138
139
140
141
142
143
144
145
146
    return data, target


def evaluate(data_source):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(eval_batch_size)
147
148
149
150
151
152
153
154
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, args.bptt):
            data, targets = get_batch(data_source, i)
            output, hidden = model(data, hidden)
            output_flat = output.view(-1, ntokens)
            #total loss can overflow if accumulated in fp16.
            total_loss += len(data) * criterion(output_flat, targets).data.float()
            hidden = repackage_hidden(hidden)
155
    return to_python_float(total_loss) / len(data_source)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176


def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss = loss * args.static_loss_scale
        loss.backward()
        loss = loss / args.static_loss_scale
        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
Michael Carilli's avatar
Michael Carilli committed
177
178
179
180
        # apex.fp16_utils.clip_grad_norm selects between "torch.nn.utils.clip_grad_norm" 
        # and "torch.nn.utils.clip_grad_norm_" based on Pytorch version.  
        # It's not FP16-specific, just a small fix to avoid deprecation warnings.
        clip_grad_norm(model.parameters(), args.clip)
181
182
183
184
185
186
187
188
189
190
191
192
193

        if args.fp16 and args.cuda:
            model_grads_to_master_grads(model_params, master_params)
            for param in master_params:
                param.data = param.data - param.grad.data * (lr/args.static_loss_scale)
            master_params_to_model_params(model_params, master_params)
        else:
            for p in model.parameters():
                p.data.add_(-lr/args.static_loss_scale, p.grad.data)

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
194
            cur_loss = to_python_float(total_loss) / args.log_interval
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                  'loss {:5.2f} | ppl {:8.2f}'.format(
                      epoch, batch, len(train_data) // args.bptt, lr,
                      elapsed * 1000 / args.log_interval, cur_loss, math.exp(min(cur_loss, 20))))
            total_loss = 0
            start_time = time.time()


# Loop over epochs.
lr = args.lr
best_val_loss = None

# At any point you can hit Ctrl + C to break out of training early.
try:
    for epoch in range(1, args.epochs+1):
        epoch_start_time = time.time()
        train()
        val_loss = evaluate(val_data)
        print('-' * 89)
        print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
              'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                         val_loss, math.exp(min(val_loss, 20))))
        print('-' * 89)
        # Save the model if the validation loss is the best we've seen so far.
        if not best_val_loss or val_loss < best_val_loss:
            with open(args.save, 'wb') as f:
                torch.save(model, f)
            best_val_loss = val_loss
        else:
            # Anneal the learning rate if no improvement has been seen in the validation dataset.
            lr /= 4.0
except KeyboardInterrupt:
    print('-' * 89)
    print('Exiting from training early')

# Load the best saved model.
with open(args.save, 'rb') as f:
    model = torch.load(f)

# Run on test data.
test_loss = evaluate(test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
    test_loss, math.exp(test_loss)))
print('=' * 89)