save_load.py 1.8 KB
Newer Older
Michael Carilli's avatar
Michael Carilli committed
1
2
3
4
5
6
7
import torch
from apex.fp16_utils import FP16_Optimizer

torch.backends.cudnn.benchmark = True

N, D_in, D_out = 64, 1024, 16

ptrblck's avatar
ptrblck committed
8
9
x = torch.randn(N, D_in, device='cuda', dtype=torch.half)
y = torch.randn(N, D_out, device='cuda', dtype=torch.half)
Michael Carilli's avatar
Michael Carilli committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

model = torch.nn.Linear(D_in, D_out).cuda().half()

optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
### Construct FP16_Optimizer with static loss scaling...
optimizer = FP16_Optimizer(optimizer, static_loss_scale=128.0)
### ...or dynamic loss scaling
# optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)

loss_fn = torch.nn.MSELoss()

# The checkpointing shown here is identical to what you'd use without FP16_Optimizer.
#
# We save/load checkpoints within local scopes, so the "checkpoint" object
# does not persist.  This helps avoid dangling references to intermediate deserialized data,
# and is good practice for Pytorch in general, not just with FP16_Optimizer.
def save_checkpoint():
    checkpoint = {}
    checkpoint['model'] = model.state_dict()
    checkpoint['optimizer'] = optimizer.state_dict()
    torch.save(checkpoint, 'saved.pth')

def load_checkpoint():
    checkpoint = torch.load('saved.pth', 
        map_location = lambda storage, loc: storage.cuda(torch.cuda.current_device()))
    model.load_state_dict(checkpoint['model'])
    optimizer.load_state_dict(checkpoint['optimizer'])

for t in range(100):
    optimizer.zero_grad()
    y_pred = model(x)
    loss = loss_fn(y_pred.float(), y.float())
    optimizer.backward(loss) ### formerly loss.backward()
    optimizer.step()

save_checkpoint()

load_checkpoint()

for t in range(100):
    optimizer.zero_grad()
    y_pred = model(x)
    loss = loss_fn(y_pred.float(), y.float())
    optimizer.backward(loss) ### formerly loss.backward()
    optimizer.step()

print("final loss = ", loss)