test_fused_optimizer.py 11.9 KB
Newer Older
1
from itertools import product
2
import random
3
import unittest
4
5

import torch
6

7
import apex
8

9
10
from apex.testing.common_utils import skipIfRocm

11

12
class TestFusedOptimizer(unittest.TestCase):
13
14
15
16
    def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
        self.max_abs_diff = max_abs_diff
        self.max_rel_diff = max_rel_diff
        self.iters = iters
17
        torch.manual_seed(9876)
18
19
20
21

    def tearDown(self):
        pass

22
    def gen_param_optim(self, tensors, options, tst_options=None):
23

24
25
26
27
28
        # Adding this to make backward compatible with existing tests. Just in
        # case "tst_options" are not provided, it gets a copy of options
        # which contains the parameters for the reference optimizer
        if tst_options == None:
            tst_options = options
29

30
31
32
        ref_param = []
        tst_param = []
        for tensor in tensors:
33
            ref_param.append(torch.nn.Parameter(tensor.clone()))
34
35
            tst_param.append(torch.nn.Parameter(tensor.clone()))

36
        ref_optim = self.ref_optim(ref_param, **options)
37
        tst_optim = self.fused_optim(tst_param, **tst_options)
38
39
40

        return (ref_param, tst_param, ref_optim, tst_optim)

41
    def gen_grad(self, ref_param, tst_param):
42
        for p_ref, p_tst in zip(ref_param, tst_param):
43
44
            p_ref.grad = torch.rand_like(p_ref)
            p_tst.grad = p_ref.grad
45
46
47
48
49
50
51
52

    def gen_mixed_grad(self, ref_param, tst_param, scale=1.0):
        half_grads = []
        for p_ref, p_tst in zip(ref_param, tst_param):
            half_grads.append(torch.rand_like(p_ref).half())
            p_ref.grad = half_grads[-1].float() / scale
        return half_grads

53
    def get_max_diff(self, ref_param, tst_param):
54
55
56
57
58
59
60
61
62
63
        max_abs_diff = max_rel_diff = 0
        for p_ref, p_tst in zip(ref_param, tst_param):
            max_abs_diff_p = (p_ref - p_tst).abs().max().item()
            max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()

            if max_abs_diff_p > max_abs_diff:  max_abs_diff = max_abs_diff_p
            if max_rel_diff_p > max_rel_diff:  max_rel_diff = max_rel_diff_p

        return max_abs_diff, max_rel_diff

64
    def gen_single_type_test(self, param_type=torch.float, device='cuda', *, skip_assert: bool = False):
65
66
        nelem = 278011

67
        # Some ref and test optimizers may require different set of options.
68
        # This is a quick workaround to add that functionality while making
69
70
71
72
73
74
        # minimum changes in existing code.
        # If there is no "tst_options" field provided, safe to initialize
        # the test optimizer with the parameters of reference optimizer.
        if not hasattr(self, 'tst_options'):
            self.tst_options = self.options

75
        tensor = torch.rand(nelem, dtype=param_type, device=device)
76

77
        ref_param, tst_param, ref_optim, tst_optim = \
78
            self.gen_param_optim([tensor], self.options, self.tst_options)
79
80

        for i in range(self.iters):
81
            self.gen_grad(ref_param, tst_param)
82
83
            ref_optim.step()
            tst_optim.step()
84
85
            if skip_assert:
                return
86
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
87
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
88
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)
89

90
91
92

class TestFusedAdam(TestFusedOptimizer):

93
94
    def setUp(self):
        super().setUp()
95
        self.options = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
96
97
            'weight_decay': 0, 'amsgrad': False, "capturable": True}
        self.tst_options = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
98
99
100
101
            'weight_decay': 0, 'amsgrad': False}
        self.ref_optim = torch.optim.Adam
        self.fused_optim = apex.optimizers.FusedAdam

102
103
    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)
104

105
106
    # NOTE(mkozuki): Current threshold values look too small for BFloat16.
    # TODO(mkozuki): Refactor `TestFusedOptimizer`
Hubert Lu's avatar
Hubert Lu committed
107
    @unittest.skip("NaN issue observed on ROCm as of 12/1/2021. The failing unit test is introduced by a PyTorch commit sometime in between rocm/pytorch:rocm4.3.1_ubuntu18.04_py3.6_pytorch_1.9.0 and 2021/12/01. Please refer to https://github.com/ROCmSoftwarePlatform/apex/issues/63")
108
    def test_half(self):
109
110
        self.gen_single_type_test(param_type=torch.float16, skip_assert=True)

111
    @skipIfRocm
112
113
    def test_bfloat16(self):
        self.gen_single_type_test(param_type=torch.bfloat16, skip_assert=True)
114

115
116
117
118
119
120
121
    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)

122
    @unittest.skip('Disable until 8/1/2019 adam/adamw upstream picked')
123
124
125
126
127
128
129
    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
        ref_param, tst_param, ref_optim, tst_optim = \
130
            self.gen_param_optim(tensors, self.options)
131
132
133
134
135
136
137
138
139
140
141
142
143
144

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support fuse scaling')
    def test_scale(self):
        nelem = 278011
        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
145
            self.gen_param_optim([tensor], self.options)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

        for i in range(self.iters):
            scale = random.random() * 1000
            half_grads = self.gen_mixed_grad(ref_param, tst_param, scale)
            ref_optim.step()
            tst_optim.step(grads=half_grads, scale=scale)
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support output fp16 param')
    def test_fp16_output(self):
        nelem = 278011

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
163
            self.gen_param_optim([tensor], self.options)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

        fp16_param = torch.nn.Parameter(tensor.clone().half())

        for i in range(self.iters):
            half_grads = self.gen_mixed_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step(grads=half_grads, output_params=[fp16_param])

            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

            max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \
                [fp16_param.float()])
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_adam_option(self):
        nelem = 1
        adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06,
184
185
186
            'weight_decay':0, 'amsgrad':False, 'capturable':True}

        adam_option_tst = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06,
187
188
189
190
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
191
            self.gen_param_optim([tensor], adam_option, adam_option_tst)
192
193
194
195
196
197
198
199
200
201
202

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)


203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
class TestFusedAdagrad(TestFusedOptimizer):
    def __init__(self, *args, **kwargs):
        super(TestFusedAdagrad, self).__init__(*args, **kwargs)
        self.options = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 1.0e-5}
        self.ref_optim = torch.optim.Adagrad
        self.fused_optim = apex.optimizers.FusedAdagrad

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    @unittest.skip("PyTorch optimizer is not numerically correct for fp16")
    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)


    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
        adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0}

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device="cuda"))
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            tensors, adagrad_option
        )

        for _ in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_params_different_devices_throws(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
        adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0}

        tensors = []
        for i, size in enumerate(sizes):
            tensors.append(torch.rand(size, dtype=torch.float, device="cuda:"+str(i % 2)))
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            tensors, adagrad_option
        )
        self.gen_grad(ref_param, tst_param)
        with self.assertRaisesRegex(RuntimeError, "not on the same device"):
            tst_optim.step()

    def test_adagrad_option(self):
        nelem = 1
        adagrad_option = {"lr": 0.01, "eps": 3e-06, "weight_decay": 0}

        tensor = torch.rand(nelem, dtype=torch.float, device="cuda")
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            [tensor], adagrad_option
        )

        for _ in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)


class TestFusedSGD(TestFusedOptimizer):
    def __init__(self, *args, **kwargs):
        super(TestFusedSGD, self).__init__(*args, **kwargs)
        self.options = {"lr": .25, "momentum": .125}
        self.ref_optim = torch.optim.SGD
        self.fused_optim = apex.optimizers.FusedSGD

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)

298
299
if __name__ == '__main__':
    unittest.main()