dp_actor.py 12.7 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Implement Actor
"""

import os
from collections import defaultdict
chenych's avatar
chenych committed
20
from typing import Any, Dict, Optional
chenych's avatar
chenych committed
21
22

import torch
chenych's avatar
chenych committed
23
from ray.experimental.tqdm_ray import tqdm
chenych's avatar
chenych committed
24
25
26
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

chenych's avatar
chenych committed
27
28
29
30
31
32
33
34
35
36
37
38
39
from ...protocol import DataProto
from ...trainer import core_algos
from ...utils import torch_functional as VF
from ...utils.py_functional import append_to_dict
from ...utils.ulysses import gather_outputs_and_unpad, ulysses_pad_and_slice_inputs
from .base import BasePPOActor
from .config import ActorConfig


try:
    from flash_attn.bert_padding import index_first_axis, pad_input, rearrange, unpad_input
except ImportError:
    pass
chenych's avatar
chenych committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


__all__ = ["DataParallelPPOActor"]


class DataParallelPPOActor(BasePPOActor):
    def __init__(
        self,
        config: ActorConfig,
        actor_module: nn.Module,
        actor_optimizer: Optional[torch.optim.Optimizer] = None,
    ):
        """
        When optimizer is None, it is Reference Policy
        """
        super().__init__(config)
        self.rank = int(os.getenv("RANK", "0"))
        self.actor_module = actor_module
        self.actor_optimizer = actor_optimizer
chenych's avatar
chenych committed
59
60
61
62
        if config.use_torch_compile:
            self.log_probs_from_logits = torch.compile(VF.log_probs_from_logits, dynamic=True)
        else:
            self.log_probs_from_logits = VF.log_probs_from_logits
chenych's avatar
chenych committed
63

chenych's avatar
chenych committed
64
    def _forward_micro_batch(self, micro_batch: Dict[str, torch.Tensor], temperature: float) -> torch.Tensor:
chenych's avatar
chenych committed
65
66
67
68
69
        """
        Returns:
            log_probs: # (bs, response_len)
        """
        input_ids = micro_batch["input_ids"]
chenych's avatar
chenych committed
70
        batch_size, seqlen = input_ids.shape
chenych's avatar
chenych committed
71
72
73
74
75
76
77
        attention_mask = micro_batch["attention_mask"]
        position_ids = micro_batch["position_ids"]
        responses = micro_batch["responses"]
        response_length = responses.size(-1)
        if position_ids.dim() == 3:  # qwen2vl mrope
            position_ids = position_ids.transpose(0, 1)  # (bsz, 3, seqlen) -> (3, bsz, seqlen)

chenych's avatar
chenych committed
78
79
80
81
82
83
        multi_modal_inputs = {}
        if "multi_modal_inputs" in micro_batch:
            for key in micro_batch["multi_modal_inputs"][0].keys():
                multi_modal_inputs[key] = torch.cat(
                    [inputs[key] for inputs in micro_batch["multi_modal_inputs"]], dim=0
                )
chenych's avatar
chenych committed
84
85

        if self.config.padding_free:
chenych's avatar
chenych committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
            input_ids_rmpad, indices, *_ = unpad_input(
                input_ids.unsqueeze(-1), attention_mask
            )  # input_ids_rmpad (total_nnz, ...)
            input_ids_rmpad = input_ids_rmpad.transpose(0, 1)  # (1, total_nnz)

            # unpad the position_ids to align the rotary
            if position_ids.dim() == 3:
                position_ids_rmpad = (
                    index_first_axis(rearrange(position_ids, "c b s ... -> (b s) c ..."), indices)
                    .transpose(0, 1)
                    .unsqueeze(1)
                )  # (3, bsz, seqlen) -> (3, 1, bsz * seqlen)
            else:
                position_ids_rmpad = index_first_axis(
                    rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."), indices
                ).transpose(0, 1)

            # for compute the log_prob
            input_ids_rmpad_rolled = torch.roll(input_ids_rmpad, shifts=-1, dims=1)  # (1, total_nnz)

            # pad and slice the inputs if sp > 1
            if self.config.ulysses_sequence_parallel_size > 1:
                input_ids_rmpad, position_ids_rmpad, pad_size = ulysses_pad_and_slice_inputs(
                    input_ids_rmpad, position_ids_rmpad, sp_size=self.config.ulysses_sequence_parallel_size
                )
                input_ids_rmpad_rolled, _, _ = ulysses_pad_and_slice_inputs(
                    input_ids_rmpad_rolled, None, self.config.ulysses_sequence_parallel_size
                )

            input_ids_rmpad_rolled = input_ids_rmpad_rolled.squeeze(0)  # ((total_nnz / sp) + pad)

            # only pass input_ids and position_ids to enable flash_attn_varlen
            output = self.actor_module(
                input_ids=input_ids_rmpad,
                attention_mask=None,
                position_ids=position_ids_rmpad,
                **multi_modal_inputs,
                use_cache=False,
            )  # prevent model thinks we are generating
            logits_rmpad = output.logits.squeeze(0)  # (total_nnz, vocab_size)
            logits_rmpad.div_(temperature)
            # ((total_nnz / sp) + pad)
            log_probs = self.log_probs_from_logits(logits=logits_rmpad, labels=input_ids_rmpad_rolled)

            # gather log_prob if sp > 1
            if self.config.ulysses_sequence_parallel_size > 1:
                # gather and unpad for the ulysses sp
                log_probs = gather_outputs_and_unpad(log_probs, gather_dim=0, unpad_dim=0, padding_size=pad_size)

            # pad back to (bsz, seqlen)
            full_log_probs = pad_input(
                hidden_states=log_probs.unsqueeze(-1), indices=indices, batch=batch_size, seqlen=seqlen
            )
            log_probs = full_log_probs.squeeze(-1)[:, -response_length - 1 : -1]  # (bsz, response_length)
chenych's avatar
chenych committed
140
141
142
143
144
        else:
            output = self.actor_module(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
chenych's avatar
chenych committed
145
                **multi_modal_inputs,
chenych's avatar
chenych committed
146
147
148
149
150
                use_cache=False,
            )
            logits: torch.Tensor = output.logits
            logits.div_(temperature)
            logits = logits[:, -response_length - 1 : -1, :]  # (bsz, response_length, vocab_size)
chenych's avatar
chenych committed
151
            log_probs = self.log_probs_from_logits(logits, responses)  # (bsz, response_length)
chenych's avatar
chenych committed
152

chenych's avatar
chenych committed
153
        return log_probs
chenych's avatar
chenych committed
154
155
156
157
158
159
160

    def _optimizer_step(self) -> torch.Tensor:
        if isinstance(self.actor_module, FSDP):
            grad_norm = self.actor_module.clip_grad_norm_(self.config.max_grad_norm)
        else:
            grad_norm = nn.utils.clip_grad_norm_(self.actor_module.parameters(), max_norm=self.config.max_grad_norm)

chenych's avatar
chenych committed
161
162
163
164
165
166
        if not torch.isfinite(grad_norm):
            print("Gradient norm is not finite. Skip update.")
        else:
            self.actor_optimizer.step()

        self.actor_optimizer.zero_grad()
chenych's avatar
chenych committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        return grad_norm

    @torch.no_grad()
    def compute_log_prob(self, data: DataProto) -> torch.Tensor:
        """Compute the log probability of the responses given input_ids, attention_mask and position_ids

        Args:
            data (DataProto): a DataProto containing keys

                ``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the
                concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``.

                ``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64.

                ``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64.

                ``responses``:  tensor of shape [batch_size, response_length]. torch.int64.

        Returns:
            torch.Tensor: the log_prob tensor
        """
        self.actor_module.eval()

        temperature = data.meta_info["temperature"]
        select_keys = ["responses", "input_ids", "attention_mask", "position_ids"]
chenych's avatar
chenych committed
192
193
        if "multi_modal_inputs" in data.non_tensor_batch.keys():
            non_tensor_select_keys = ["multi_modal_inputs"]
chenych's avatar
chenych committed
194
        else:
chenych's avatar
chenych committed
195
            non_tensor_select_keys = []
chenych's avatar
chenych committed
196
197
198
199
200

        micro_batches = data.select(select_keys, non_tensor_select_keys).split(
            self.config.micro_batch_size_per_device_for_experience
        )
        log_probs_lst = []
chenych's avatar
chenych committed
201
202
203
204
        if self.rank == 0:
            micro_batches = tqdm(micro_batches, desc="Compute log probs", position=2)

        for micro_batch in micro_batches:
chenych's avatar
chenych committed
205
            model_inputs = {**micro_batch.batch, **micro_batch.non_tensor_batch}
chenych's avatar
chenych committed
206
            log_probs = self._forward_micro_batch(model_inputs, temperature=temperature)
chenych's avatar
chenych committed
207
208
209
210
211
212
213
214
215
216
            log_probs_lst.append(log_probs)

        log_probs = torch.concat(log_probs_lst, dim=0)
        return log_probs

    def update_policy(self, data: DataProto) -> Dict[str, Any]:
        self.actor_module.train()

        temperature = data.meta_info["temperature"]  # temperature must be in the data.meta_info to avoid slient error
        select_keys = ["responses", "input_ids", "attention_mask", "position_ids", "old_log_probs", "advantages"]
chenych's avatar
chenych committed
217
218
        if self.config.use_kl_loss and not self.config.disable_kl:
            select_keys.append("ref_log_probs")
chenych's avatar
chenych committed
219

chenych's avatar
chenych committed
220
221
        if "multi_modal_inputs" in data.non_tensor_batch.keys():
            non_tensor_select_keys = ["multi_modal_inputs"]
chenych's avatar
chenych committed
222
        else:
chenych's avatar
chenych committed
223
            non_tensor_select_keys = []
chenych's avatar
chenych committed
224
225
226
227
228
229

        # Split to make minibatch iterator for updating the actor
        # See PPO paper for details. https://arxiv.org/abs/1707.06347
        mini_batches = data.select(select_keys, non_tensor_select_keys).split(self.config.global_batch_size_per_device)

        metrics = defaultdict(list)
chenych's avatar
chenych committed
230
231
232
233
234
235
236
        for _ in range(self.config.ppo_epochs):
            if self.rank == 0:
                mini_batches = tqdm(mini_batches, desc="Train mini-batches", position=2)

            for mini_batch in mini_batches:
                gradient_accumulation = (
                    self.config.global_batch_size_per_device // self.config.micro_batch_size_per_device_for_update
chenych's avatar
chenych committed
237
                )
chenych's avatar
chenych committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
                micro_batches = mini_batch.split(self.config.micro_batch_size_per_device_for_update)
                if self.rank == 0:
                    micro_batches = tqdm(micro_batches, desc="Update policy", position=3)

                for micro_batch in micro_batches:
                    model_inputs = {**micro_batch.batch, **micro_batch.non_tensor_batch}
                    responses = model_inputs["responses"]
                    response_length = responses.size(1)
                    attention_mask = model_inputs["attention_mask"]
                    response_mask = attention_mask[:, -response_length:]
                    old_log_probs = model_inputs["old_log_probs"]
                    advantages = model_inputs["advantages"]

                    # all return: (bsz, response_length)
                    log_probs = self._forward_micro_batch(model_inputs, temperature=temperature)
chenych's avatar
Update  
chenych committed
253
                    entropy_loss = -VF.masked_mean(log_probs, response_mask)  # estimator of entropy loss
chenych's avatar
chenych committed
254

chenych's avatar
Update  
chenych committed
255
                    pg_loss, pg_clipfrac_higher, pg_clipfrac_lower, ppo_kl = core_algos.compute_policy_loss(
chenych's avatar
chenych committed
256
257
258
                        old_log_probs=old_log_probs,
                        log_probs=log_probs,
                        advantages=advantages,
chenych's avatar
Update  
chenych committed
259
260
261
262
                        response_mask=response_mask,
                        clip_ratio_low=self.config.clip_ratio_low,
                        clip_ratio_high=self.config.clip_ratio_high,
                        clip_ratio_dual=self.config.clip_ratio_dual,
chenych's avatar
chenych committed
263
                    )
chenych's avatar
chenych committed
264
265
266
                    if "ref_log_probs" in model_inputs:
                        ref_log_probs = model_inputs["ref_log_probs"]
                        # compute kl loss
chenych's avatar
Update  
chenych committed
267
                        kld = core_algos.compute_kl(
chenych's avatar
chenych committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                            log_probs=log_probs,
                            ref_log_probs=ref_log_probs,
                            kl_penalty=self.config.kl_penalty,
                        )
                        kl_loss = VF.masked_mean(kld, response_mask)
                        pg_loss = pg_loss + kl_loss * self.config.kl_coef
                        metrics["actor/kl_loss"] = kl_loss.detach().item()
                        metrics["actor/kl_coef"] = self.config.kl_coef

                    loss = pg_loss / gradient_accumulation
                    loss.backward()

                    batch_metrics = {
                        "actor/pg_loss": pg_loss.detach().item(),
chenych's avatar
Update  
chenych committed
282
283
284
                        "actor/pg_clipfrac_higher": pg_clipfrac_higher.detach().item(),
                        "actor/pg_clipfrac_lower": pg_clipfrac_lower.detach().item(),
                        "actor/entropy_loss": entropy_loss.detach().item(),
chenych's avatar
chenych committed
285
286
287
288
289
290
                        "actor/ppo_kl": ppo_kl.detach().item(),
                    }
                    append_to_dict(metrics, batch_metrics)

                grad_norm = self._optimizer_step()
                append_to_dict(metrics, {"actor/grad_norm": grad_norm.detach().item()})
chenych's avatar
chenych committed
291
292

        return metrics