"vscode:/vscode.git/clone" did not exist on "65eeb427db7f0bf66ca70d506ea09da7b0ae3032"
torch_functional.py 13 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contain small torch utilities
"""

chenych's avatar
chenych committed
18
from typing import List, Literal, Optional, Tuple, Union
chenych's avatar
chenych committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

import torch
import torch.distributed
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR


try:
    from flash_attn.ops.triton.cross_entropy import cross_entropy_loss

    FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE = True
except ImportError:
    FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE = False


chenych's avatar
chenych committed
34
35
36
37
38
39
40
@torch.compiler.disable()
def log_probs_from_logits_flash_attn(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
    output = cross_entropy_loss(logits, labels, inplace_backward=True)
    if not isinstance(output, tuple):
        raise ValueError(
            "please make sure flash-attn>=2.4.3 where cross_entropy_loss returns Tuple[losses, z_losses]."
        )
chenych's avatar
chenych committed
41
42
43
44

    return -output[0]


chenych's avatar
chenych committed
45
46
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
    """Compute log probs on the label ids given logits.
chenych's avatar
chenych committed
47

chenych's avatar
chenych committed
48
    We may use torch compile to speed up computing.
chenych's avatar
chenych committed
49

chenych's avatar
chenych committed
50
51
52
    Args:
        logits (torch.Tensor): logits of the model, shape (batch_size, seqlen, vocab_size)
        labels (torch.Tensor): labels of the model, shape (batch_size, seqlen)
chenych's avatar
chenych committed
53

chenych's avatar
chenych committed
54
55
    Returns:
        torch.Tensor: log probs of the labels, shape (batch_size, seqlen)
chenych's avatar
chenych committed
56
    """
chenych's avatar
chenych committed
57
58
59
60
61
62
63
64
    batch_dim = logits.shape[:-1]
    vocab_dim = logits.shape[-1]
    logits = logits.contiguous().view(-1, vocab_dim)
    labels = labels.contiguous().view(-1)
    if FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE:
        output = log_probs_from_logits_flash_attn(logits, labels)
    else:  # fall back to torch kernel, upcast logits to fp32
        output = F.cross_entropy(logits.float(), labels, reduction="none")
chenych's avatar
chenych committed
65

chenych's avatar
chenych committed
66
    return output.view(*batch_dim)
chenych's avatar
chenych committed
67
68


chenych's avatar
chenych committed
69
def masked_mean(values: torch.Tensor, mask: torch.Tensor, dim: int = None, eps: float = 1e-8) -> torch.Tensor:
chenych's avatar
chenych committed
70
    """Compute mean of tensor with a masked values."""
chenych's avatar
chenych committed
71
    return (values * mask).sum(dim=dim) / (mask.sum(dim=dim) + eps)
chenych's avatar
chenych committed
72
73


chenych's avatar
chenych committed
74
def masked_var(values: torch.Tensor, mask: torch.Tensor, unbiased: bool = True) -> torch.Tensor:
chenych's avatar
chenych committed
75
76
77
78
79
80
    """Compute variance of tensor with masked values."""
    mean = masked_mean(values, mask)
    centered_values = values - mean
    variance = masked_mean(centered_values**2, mask)
    if unbiased:
        mask_sum = mask.sum()
chenych's avatar
chenych committed
81
82
83
84
        if mask_sum <= 1:
            print("The sum of the mask is less than one, which can cause a division by zero.")
            return variance

chenych's avatar
chenych committed
85
86
        bessel_correction = mask_sum / (mask_sum - 1)
        variance = variance * bessel_correction
chenych's avatar
chenych committed
87

chenych's avatar
chenych committed
88
89
90
    return variance


chenych's avatar
chenych committed
91
def masked_whiten(values: torch.Tensor, mask: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
chenych's avatar
chenych committed
92
93
    """Whiten values with masked values."""
    mean, var = masked_mean(values, mask), masked_var(values, mask)
chenych's avatar
chenych committed
94
    return (values - mean) * torch.rsqrt(var + eps)
chenych's avatar
chenych committed
95
96


chenych's avatar
Update  
chenych committed
97
98
99
def get_response_mask(
    response_ids: torch.Tensor, eos_token_id: Union[int, List[int]] = 2, dtype: torch.dtype = torch.long
):
chenych's avatar
chenych committed
100
101
102
103
104
    """Get the mask for the response ids, the mask will be 0 after the first eos token.

    eos_token_id can be int or list: 1 or [1, 2].
    ```
    e.g. eos_token = 1
chenych's avatar
Update  
chenych committed
105
106
    response_ids:  [0, 0, 2, 4, 3, 5, 1, 0, 0]
    response_mask: [1, 1, 1, 1, 1, 1, 1, 0, 0]
chenych's avatar
chenych committed
107
    ```
chenych's avatar
chenych committed
108
    """
chenych's avatar
chenych committed
109
110
    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]
chenych's avatar
chenych committed
111

chenych's avatar
Update  
chenych committed
112
    response_mask = torch.zeros_like(response_ids, dtype=torch.bool)
chenych's avatar
chenych committed
113
    for token_id in eos_token_id:
chenych's avatar
Update  
chenych committed
114
        response_mask |= response_ids.eq(token_id)
chenych's avatar
chenych committed
115

chenych's avatar
Update  
chenych committed
116
117
118
119
    response_mask = response_mask.long()
    response_mask = (torch.cumsum(response_mask, dim=1) - response_mask).bool()
    response_mask = torch.logical_not(response_mask).to(dtype)
    return response_mask
chenych's avatar
chenych committed
120
121


chenych's avatar
chenych committed
122
123
124
125
126
127
def pad_2d_list_to_length(
    response: List[List[int]], pad_token_id: int, max_length: Optional[int] = None
) -> torch.Tensor:
    """Pad a 2D list (e.g. responses, log_probs) to a 2D tensor."""
    max_response_length = max(len(sub_list) for sub_list in response)
    if max_length is not None and max_length > max_response_length:
chenych's avatar
chenych committed
128
129
        target_length = max_length
    else:
chenych's avatar
chenych committed
130
131
        target_length = max_response_length

chenych's avatar
chenych committed
132
133
134
135
136
    padded_response = [tuple(sub_list) + (pad_token_id,) * (target_length - len(sub_list)) for sub_list in response]
    tensor = torch.tensor(padded_response)
    return tensor


chenych's avatar
chenych committed
137
138
139
140
141
142
def pad_sequence_to_length(
    tensor: torch.Tensor, max_seq_len: int, pad_token_id: int, left_pad: bool = False
) -> torch.Tensor:
    """Pad a nD tensors in the last dim to max_seq_len."""
    if tensor.size(-1) >= max_seq_len:
        return tensor
chenych's avatar
chenych committed
143

chenych's avatar
chenych committed
144
145
146
147
    pad_shape = list(tensor.shape)
    pad_shape[-1] = max_seq_len - tensor.size(-1)
    pad_tensor = torch.full(pad_shape, fill_value=pad_token_id, dtype=tensor.dtype, device=tensor.device)
    return torch.cat((pad_tensor, tensor), dim=-1) if left_pad else torch.cat((tensor, pad_tensor), dim=-1)
chenych's avatar
chenych committed
148
149


chenych's avatar
chenych committed
150
151
152
153
def postprocess_data(
    input_ids: torch.Tensor,
    attention_mask: torch.Tensor,
    position_ids: torch.Tensor,
chenych's avatar
chenych committed
154
155
156
157
158
    max_length: int,
    pad_token_id: int,
    left_pad: bool = True,
    truncation: Literal["left", "right", "error"] = "error",
):
chenych's avatar
chenych committed
159
    """Pad or truncate data."""
chenych's avatar
chenych committed
160
    assert truncation in ["left", "right", "error"]
chenych's avatar
chenych committed
161
162
    seq_length = len(input_ids)
    if seq_length < max_length:
chenych's avatar
chenych committed
163
164
165
166
167
168
        input_ids = pad_sequence_to_length(
            input_ids, max_seq_len=max_length, pad_token_id=pad_token_id, left_pad=left_pad
        )
        attention_mask = pad_sequence_to_length(
            attention_mask, max_seq_len=max_length, pad_token_id=0, left_pad=left_pad
        )
chenych's avatar
chenych committed
169
170
171
172
173
174
        position_ids = pad_sequence_to_length(position_ids, max_seq_len=max_length, pad_token_id=0, left_pad=left_pad)
    elif seq_length > max_length:
        if truncation == "left":  # actually, left truncation may not be reasonable
            input_ids = input_ids[..., -max_length:]
            attention_mask = attention_mask[..., -max_length:]
            position_ids = position_ids[..., -max_length:]
chenych's avatar
chenych committed
175
        elif truncation == "right":
chenych's avatar
chenych committed
176
177
178
            input_ids = input_ids[..., :max_length]
            attention_mask = attention_mask[..., :max_length]
            position_ids = position_ids[..., :max_length]
chenych's avatar
chenych committed
179
        elif truncation == "error":
chenych's avatar
chenych committed
180
            raise NotImplementedError(f"{seq_length} is larger than {max_length}.")
chenych's avatar
chenych committed
181
        else:
chenych's avatar
chenych committed
182
            raise NotImplementedError(f"Unknown truncation method {truncation}.")
chenych's avatar
chenych committed
183

chenych's avatar
chenych committed
184
    return input_ids, attention_mask, position_ids
chenych's avatar
chenych committed
185
186
187


def get_constant_schedule_with_warmup(
chenych's avatar
chenych committed
188
    optimizer: torch.optim.Optimizer,
chenych's avatar
chenych committed
189
190
    num_warmup_steps: int,
    last_epoch: int = -1,
chenych's avatar
chenych committed
191
192
193
194
195
) -> torch.optim.lr_scheduler.LRScheduler:
    """Get the lr scheduler for constant lr."""

    def lr_lambda(current_step: int) -> float:
        return min(1.0, float(current_step) / float(max(1, num_warmup_steps)))
chenych's avatar
chenych committed
196
197
198
199

    return LambdaLR(optimizer, lr_lambda, last_epoch)


chenych's avatar
chenych committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# https://github.com/meta-llama/llama-cookbook/blob/v0.0.5/src/llama_cookbook/policies/anyprecision_optimizer.py
class AnyPrecisionAdamW(torch.optim.Optimizer):
    def __init__(
        self,
        params: List[torch.Tensor],
        lr: float = 1e-3,
        betas: Tuple[float, float] = (0.9, 0.999),
        eps: float = 1e-8,
        weight_decay: float = 0.0,
        use_kahan_summation: bool = True,
        momentum_dtype: torch.dtype = torch.bfloat16,
        variance_dtype: torch.dtype = torch.bfloat16,
        compensation_buffer_dtype: torch.dtype = torch.bfloat16,
    ):
        """
        Args:
                params (iterable): iterable of parameters to optimize or dicts defining parameter groups
                lr (float, optional): learning rate (default: 1e-3)
                betas (Tuple[float, float], optional): coefficients used for computing
                    running averages of gradient and its square (default: (0.9, 0.999))
                eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
                weight_decay (float, optional): weight decay coefficient (default: 1e-2)

                # Any Precision specific
                use_kahan_summation = creates auxiliary buffer to ensure high precision
                model param updates (default: False)
                momentum_dtype = dtype for momentum  (default: bfloat16)
                variance_dtype = dtype for uncentered variance (default: bfloat16)
                compensation_buffer_dtype  = dtype for Kahan summation buffer (default: bfloat16)

                # Usage
                This optimizer implements optimizer states, and Kahan summation
                for high precision updates, all in user controlled dtypes.
                Defaults are variance in BF16, Momentum in FP32.
                This can be run in FSDP mixed precision, amp, or full precision,
                depending on what training pipeline you wish to work with.

                Setting to use_kahan_summation = False, and changing momentum and
                variance dtypes to FP32, reverts this to a standard AdamW optimizer.

        """
        defaults = {
            "lr": lr,
            "betas": betas,
            "eps": eps,
            "weight_decay": weight_decay,
            "use_kahan_summation": use_kahan_summation,
            "momentum_dtype": momentum_dtype,
            "variance_dtype": variance_dtype,
            "compensation_buffer_dtype": compensation_buffer_dtype,
        }
        super().__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model and returns the loss.
        """

        if closure is not None:
            with torch.enable_grad():
                closure()

        for group in self.param_groups:
            beta1, beta2 = group["betas"]
            lr = group["lr"]
            weight_decay = group["weight_decay"]
            eps = group["eps"]
            use_kahan_summation = group["use_kahan_summation"]

            momentum_dtype = group["momentum_dtype"]
            variance_dtype = group["variance_dtype"]
            compensation_buffer_dtype = group["compensation_buffer_dtype"]
            for p in group["params"]:
                if p.grad is None:
                    continue

                if p.grad.is_sparse:
                    raise RuntimeError("AnyPrecisionAdamW does not support sparse gradients.")

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    state["step"] = torch.tensor(0.0)

                    # momentum - EMA of gradient values
                    state["exp_avg"] = torch.zeros_like(p, dtype=momentum_dtype)

                    # variance uncentered - EMA of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(p, dtype=variance_dtype)

                    # optional Kahan summation - accumulated error tracker
                    if use_kahan_summation:
                        state["compensation"] = torch.zeros_like(p, dtype=compensation_buffer_dtype)

                # Main processing
                # update the steps for each param group update
                state["step"] += 1
                step = state["step"]

                exp_avg = state["exp_avg"]
                exp_avg_sq = state["exp_avg_sq"]
                grad = p.grad

                if weight_decay:  # weight decay, AdamW style
                    p.data.mul_(1 - lr * weight_decay)

                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)  # update momentum
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)  # update uncentered variance

                bias_correction1 = 1 - beta1**step  # adjust using bias1
                step_size = lr / bias_correction1

                denom_correction = (1 - beta2**step) ** 0.5  # adjust using bias2 and avoids math import
                centered_variance = (exp_avg_sq.sqrt() / denom_correction).add_(eps, alpha=1)

                if use_kahan_summation:  # lr update to compensation
                    compensation = state["compensation"]
                    compensation.addcdiv_(exp_avg, centered_variance, value=-step_size)

                    # update weights with compensation (Kahan summation)
                    # save error back to compensation for next iteration
                    temp_buffer = p.detach().clone()
                    p.data.add_(compensation)
                    compensation.add_(temp_buffer.sub_(p.data))
                else:  # usual AdamW updates
                    p.data.addcdiv_(exp_avg, centered_variance, value=-step_size)