main.py 3.99 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
"""

import json
chenych's avatar
chenych committed
19
import torch
chenych's avatar
chenych committed
20
import ray
chenych's avatar
chenych committed
21

chenych's avatar
chenych committed
22
23
from omegaconf import OmegaConf

chenych's avatar
chenych committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from ..single_controller.ray import RayWorkerGroup
from ..utils.tokenizer import get_processor, get_tokenizer
from ..workers.fsdp_workers import FSDPWorker
from ..workers.reward import CustomRewardManager
from .config import PPOConfig
from .ray_trainer import RayPPOTrainer, ResourcePoolManager, Role


# please make sure main_task is not scheduled on head
@ray.remote(num_cpus=1)
class Runner:
    """A runner for RL training."""

    def run(self, config: PPOConfig):
        # print config
        config.deep_post_init()
        print(json.dumps(config.to_dict(), indent=2))

        # instantiate tokenizer
        tokenizer = get_tokenizer(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )
        processor = get_processor(
            config.worker.actor.model.model_path,
            trust_remote_code=config.worker.actor.model.trust_remote_code,
            use_fast=True,
        )

        # define worker classes
        ray_worker_group_cls = RayWorkerGroup
        role_worker_mapping = {
            Role.ActorRollout: ray.remote(FSDPWorker),
            Role.Critic: ray.remote(FSDPWorker),
            Role.RefPolicy: ray.remote(FSDPWorker),
        }
        global_pool_id = "global_pool"
        resource_pool_spec = {
            global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
        }
        mapping = {
            Role.ActorRollout: global_pool_id,
            Role.Critic: global_pool_id,
            Role.RefPolicy: global_pool_id,
        }
        resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

chenych's avatar
Update  
chenych committed
72
73
        reward_fn = CustomRewardManager(tokenizer=tokenizer, config=config.worker.reward)
        val_reward_fn = CustomRewardManager(tokenizer=tokenizer, config=config.worker.reward)
chenych's avatar
chenych committed
74
75
76
77
78
79
80
81
82
83
84
85
86

        trainer = RayPPOTrainer(
            config=config,
            tokenizer=tokenizer,
            processor=processor,
            role_worker_mapping=role_worker_mapping,
            resource_pool_manager=resource_pool_manager,
            ray_worker_group_cls=ray_worker_group_cls,
            reward_fn=reward_fn,
            val_reward_fn=val_reward_fn,
        )
        trainer.init_workers()
        trainer.fit()
chenych's avatar
chenych committed
87
88
89
90
91


def main():
    cli_args = OmegaConf.from_cli()
    default_config = OmegaConf.structured(PPOConfig())
chenych's avatar
chenych committed
92
93
94
95
96
97
98

    if hasattr(cli_args, "config"):
        config_path = cli_args.pop("config", None)
        file_config = OmegaConf.load(config_path)
        default_config = OmegaConf.merge(default_config, file_config)

    ppo_config = OmegaConf.merge(default_config, cli_args)
chenych's avatar
chenych committed
99
100
101
    ppo_config = OmegaConf.to_object(ppo_config)

    if not ray.is_initialized():
chenych's avatar
Update  
chenych committed
102
        # this is for local ray cluster
chenych's avatar
chenych committed
103
104
105
106
107
108
109
        if torch.version.hip is not None:
            ray.init(num_gpus=torch.cuda.device_count(),
                     ignore_reinit_error=True,
                     runtime_env={"env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN"}})
        else:
            ray.init(runtime_env={"env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN"}})

chenych's avatar
Update  
chenych committed
110

chenych's avatar
chenych committed
111
112
    runner = Runner.remote()
    ray.get(runner.run.remote(ppo_config))
chenych's avatar
chenych committed
113
114
115
116


if __name__ == "__main__":
    main()