fsdp_vllm.py 4.04 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import torch.distributed as dist
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp.api import ShardedStateDictConfig, StateDictType
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from vllm import LLM
from vllm.distributed import parallel_state as vllm_ps

from verl import DataProto
from verl.utils.performance import log_gpu_memory_usage
from verl.workers.rollout.vllm_rollout import load_dtensor_weights

from .base import BaseShardingManager


class FSDPVLLMShardingManager(BaseShardingManager):
    def __init__(
        self,
        module: FSDP,
        inference_engine: LLM,
        device_mesh: DeviceMesh = None,
    ):
        self.module = module
        self.inference_engine = inference_engine
        self.device_mesh = device_mesh
        FSDP.set_state_dict_type(
            self.module,
            state_dict_type=StateDictType.SHARDED_STATE_DICT,
            state_dict_config=ShardedStateDictConfig(),
        )

        # Note that torch_random_states may be different on each dp rank
        self.torch_random_states = torch.cuda.get_rng_state()
        # get a random rng states
        if self.device_mesh is not None:
            gen_dp_rank = self.device_mesh["dp"].get_local_rank()
            torch.cuda.manual_seed(gen_dp_rank + 1000)  # make sure all tp ranks have the same random states
            self.gen_random_states = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(self.torch_random_states)
        else:
            self.gen_random_states = None

    def __enter__(self):
        log_gpu_memory_usage("Before state_dict() in sharding manager")
        actor_weights = self.module.state_dict()
        log_gpu_memory_usage("After state_dict() in sharding manager")

        self.inference_engine.wake_up()
        load_dtensor_weights(
            actor_weights, self.inference_engine.llm_engine.model_executor.driver_worker.worker.model_runner.model
        )
        log_gpu_memory_usage("After sync model weights in sharding manager")

        del actor_weights
        torch.cuda.empty_cache()
        log_gpu_memory_usage("After del state_dict and empty_cache in sharding manager")
        # important: need to manually set the random states of each tp to be identical.
        if self.device_mesh is not None:
            self.torch_random_states = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(self.gen_random_states)

    def __exit__(self, exc_type, exc_value, traceback):
        log_gpu_memory_usage("Before vllm offload in sharding manager")
        self.inference_engine.sleep(level=1)
        log_gpu_memory_usage("After vllm offload in sharding manager")

        self.module.train()
        torch.cuda.empty_cache()  # add empty cache after each compute

        # restore random states
        if self.device_mesh is not None:
            self.gen_random_states = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(self.torch_random_states)

    def preprocess_data(self, data: DataProto) -> DataProto:
        tp_group = vllm_ps.get_tensor_model_parallel_group().device_group
        data = data.to("cuda")
        data.all_gather(tp_group)
        return data

    def postprocess_data(self, data: DataProto) -> DataProto:
        dp_rank = dist.get_rank()
        tp_size = vllm_ps.get_tensor_model_parallel_world_size()
        if tp_size > 1:
            data = data.chunk(chunks=tp_size)[dp_rank % tp_size]

        return data