config.py 1.73 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ActorRolloutRef config
"""

from dataclasses import dataclass, field

chenych's avatar
chenych committed
20
21
22
23
from .actor import ActorConfig, FSDPConfig, ModelConfig, OptimConfig, RefConfig
from .critic import CriticConfig
from .reward import RewardConfig
from .rollout import RolloutConfig
chenych's avatar
chenych committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


__all__ = [
    "ActorConfig",
    "CriticConfig",
    "FSDPConfig",
    "ModelConfig",
    "OptimConfig",
    "RefConfig",
    "RewardConfig",
    "RolloutConfig",
    "WorkerConfig",
]


@dataclass
class WorkerConfig:
    hybrid_engine: bool = True
    actor: ActorConfig = field(default_factory=ActorConfig)
    critic: CriticConfig = field(default_factory=CriticConfig)
    ref: RefConfig = field(default_factory=RefConfig)
    reward: RewardConfig = field(default_factory=RewardConfig)
    rollout: RolloutConfig = field(default_factory=RolloutConfig)

    def post_init(self):
        self.ref.micro_batch_size_per_device_for_experience = self.actor.micro_batch_size_per_device_for_experience
chenych's avatar
chenych committed
50
51
52
        self.ref.padding_free = self.actor.padding_free
        self.ref.ulysses_sequence_parallel_size = self.actor.ulysses_sequence_parallel_size
        self.ref.use_torch_compile = self.actor.use_torch_compile