model_utils.py 2.15 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities to create common models
"""

chenych's avatar
chenych committed
18
19
20
from functools import lru_cache
from typing import Optional, Tuple

chenych's avatar
chenych committed
21
import torch
chenych's avatar
chenych committed
22
import torch.distributed as dist
chenych's avatar
chenych committed
23
24
25
from torch import nn


chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@lru_cache
def is_rank0() -> int:
    return (not dist.is_initialized()) or (dist.get_rank() == 0)


def print_gpu_memory_usage(prefix: str = "GPU memory usage") -> None:
    """Report the current GPU VRAM usage."""
    if is_rank0():
        free_mem, total_mem = torch.cuda.mem_get_info()
        print(f"{prefix}: {(total_mem - free_mem) / (1024**3):.2f} GB / {total_mem / (1024**3):.2f} GB.")


def _get_model_size(model: nn.Module, scale: str = "auto") -> Tuple[float, str]:
    """Compute the model size."""
chenych's avatar
chenych committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    n_params = sum(p.numel() for p in model.parameters())

    if scale == "auto":
        if n_params > 1e9:
            scale = "B"
        elif n_params > 1e6:
            scale = "M"
        elif n_params > 1e3:
            scale = "K"
        else:
            scale = ""

    if scale == "B":
        n_params = n_params / 1e9
    elif scale == "M":
        n_params = n_params / 1e6
    elif scale == "K":
        n_params = n_params / 1e3
    elif scale == "":
        pass
    else:
chenych's avatar
chenych committed
61
        raise NotImplementedError(f"Unknown scale {scale}.")
chenych's avatar
chenych committed
62
63
64
65

    return n_params, scale


chenych's avatar
chenych committed
66
67
68
69
70
71
def print_model_size(model: nn.Module, name: Optional[str] = None) -> None:
    """Print the model size."""
    if is_rank0():
        n_params, scale = _get_model_size(model, scale="auto")
        if name is None:
            name = model.__class__.__name__
chenych's avatar
chenych committed
72

chenych's avatar
chenych committed
73
        print(f"{name} contains {n_params:.2f}{scale} parameters.")