function.py 3.32 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
update  
chenych committed
15
16
17
import importlib.util
import os
import sys
chenych's avatar
chenych committed
18
from collections import defaultdict
chenych's avatar
update  
chenych committed
19
20
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, TypedDict
chenych's avatar
chenych committed
21

chenych's avatar
chenych committed
22
23
24
import torch
from transformers import PreTrainedTokenizer

chenych's avatar
chenych committed
25
from ...protocol import DataProto
chenych's avatar
Update  
chenych committed
26
from .config import RewardConfig
chenych's avatar
chenych committed
27
28
29
30


class RewardScore(TypedDict):
    overall: float
chenych's avatar
update  
chenych committed
31
32
33
34
    format: Optional[float]
    accuracy: Optional[float]


chenych's avatar
chenych committed
35
RewardFunction = Callable[[str, str], RewardScore]
chenych's avatar
update  
chenych committed
36
37
38


class FunctionRewardManager:
chenych's avatar
chenych committed
39
    """Reward manager for rule-based reward."""
chenych's avatar
update  
chenych committed
40

chenych's avatar
chenych committed
41
42
43
    def __init__(self, config: RewardConfig, tokenizer: PreTrainedTokenizer):
        if config.reward_function is None:
            raise ValueError("Reward function is not provided.")
chenych's avatar
update  
chenych committed
44

chenych's avatar
chenych committed
45
46
        if not os.path.exists(config.reward_function):
            raise FileNotFoundError(f"Reward function file {config.reward_function} not found.")
chenych's avatar
update  
chenych committed
47

chenych's avatar
chenych committed
48
        spec = importlib.util.spec_from_file_location("custom_reward_fn", config.reward_function)
chenych's avatar
update  
chenych committed
49
50
        module = importlib.util.module_from_spec(spec)
        try:
chenych's avatar
chenych committed
51
            sys.modules["custom_reward_fn"] = module
chenych's avatar
update  
chenych committed
52
53
            spec.loader.exec_module(module)
        except Exception as e:
chenych's avatar
chenych committed
54
            raise RuntimeError(f"Failed to load reward function: {e}")
chenych's avatar
chenych committed
55

chenych's avatar
chenych committed
56
57
        if not hasattr(module, config.reward_function_name):
            raise AttributeError(f"Module {module} does not have function {config.reward_function_name}.")
chenych's avatar
chenych committed
58

chenych's avatar
chenych committed
59
60
61
62
63
        reward_fn: RewardFunction = getattr(module, config.reward_function_name)
        print(f"Using reward function `{config.reward_function_name}` from `{config.reward_function}`.")
        self.reward_fn = partial(reward_fn, **config.reward_function_kwargs)
        self.config = config
        self.tokenizer = tokenizer
chenych's avatar
chenych committed
64

chenych's avatar
chenych committed
65
    def compute_reward(self, data: DataProto) -> Tuple[torch.Tensor, Dict[str, List[float]]]:
chenych's avatar
chenych committed
66
        reward_tensor = torch.zeros_like(data.batch["responses"], dtype=torch.float32)
chenych's avatar
chenych committed
67
        reward_metrics = defaultdict(list)
chenych's avatar
chenych committed
68
69
70
        for i in range(len(data)):
            data_item = data[i]  # DataProtoItem
            response_ids = data_item.batch["responses"]
chenych's avatar
chenych committed
71
72
            response_mask = data_item.batch["response_mask"]
            valid_response_length = response_mask.sum()
chenych's avatar
chenych committed
73
74
            valid_response_ids = response_ids[:valid_response_length]

chenych's avatar
Update  
chenych committed
75
76
77
            response_str = self.tokenizer.decode(
                valid_response_ids, skip_special_tokens=self.config.skip_special_tokens
            )
chenych's avatar
chenych committed
78
            ground_truth = data_item.non_tensor_batch["ground_truth"]
chenych's avatar
chenych committed
79

chenych's avatar
chenych committed
80
            score = self.reward_fn(response_str, ground_truth)
chenych's avatar
chenych committed
81
82
83
            reward_tensor[i, valid_response_length - 1] = score["overall"]
            for key, value in score.items():
                reward_metrics[key].append(value)
chenych's avatar
chenych committed
84

chenych's avatar
chenych committed
85
        return reward_tensor, reward_metrics