"vscode:/vscode.git/clone" did not exist on "7e8187e00428d292b98526ba7b78f95a30f05fba"
worker.py 6.84 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
the class for Worker
"""

import os
import socket
from dataclasses import dataclass
chenych's avatar
chenych committed
21
from typing import Tuple
chenych's avatar
chenych committed
22
23

import ray
chenych's avatar
chenych committed
24
import torch
chenych's avatar
chenych committed
25

chenych's avatar
chenych committed
26
27
from .decorator import Dispatch, Execute, register
from .register_center.ray import create_worker_group_register_center
chenych's avatar
chenych committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DistRankInfo:
    tp_rank: int
    dp_rank: int
    pp_rank: int


@dataclass
class DistGlobalInfo:
    tp_size: int
    dp_size: int
    pp_size: int


class WorkerHelper:
chenych's avatar
chenych committed
45
    def _get_node_ip(self) -> str:
chenych's avatar
chenych committed
46
47
48
49
50
51
52
53
        host_ipv4 = os.getenv("MY_HOST_IP", None)
        host_ipv6 = os.getenv("MY_HOST_IPV6", None)
        host_ip_by_env = host_ipv4 or host_ipv6
        host_ip_by_sdk = ray._private.services.get_node_ip_address()

        host_ip = host_ip_by_env or host_ip_by_sdk
        return host_ip

chenych's avatar
chenych committed
54
    def _get_free_port(self) -> int:
chenych's avatar
chenych committed
55
56
57
58
        with socket.socket() as sock:
            sock.bind(("", 0))
            return sock.getsockname()[1]

chenych's avatar
chenych committed
59
    def get_availale_master_addr_port(self) -> Tuple[str, str]:
chenych's avatar
chenych committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        return self._get_node_ip(), str(self._get_free_port())

    def _get_pid(self):
        return


class WorkerMeta:
    keys = [
        "WORLD_SIZE",
        "RANK",
        "LOCAL_WORLD_SIZE",
        "LOCAL_RANK",
        "MASTER_ADDR",
        "MASTER_PORT",
        "CUDA_VISIBLE_DEVICES",
    ]

    def __init__(self, store) -> None:
        self._store = store

    def to_dict(self):
        return {f"_{key.lower()}": self._store.get(f"_{key.lower()}", None) for key in WorkerMeta.keys}


# we assume that in each WorkerGroup, there is a Master Worker
class Worker(WorkerHelper):
chenych's avatar
chenych committed
86
87
88
89
90
91
92
93
94
95
    """A (distributed) worker."""

    _world_size: int
    _rank: int
    _local_world_size: int
    _local_rank: int
    _master_addr: str
    _master_port: str
    _cuda_visible_devices: str

chenych's avatar
chenych committed
96
97
98
99
    def __new__(cls, *args, **kwargs):
        instance = super().__new__(cls)

        # note that here we use int to distinguish
chenych's avatar
chenych committed
100
        disable_worker_init = int(os.getenv("DISABLE_WORKER_INIT", 0))
chenych's avatar
chenych committed
101
102
103
        if disable_worker_init:
            return instance

chenych's avatar
chenych committed
104
105
        rank = os.getenv("RANK", None)
        worker_group_prefix = os.getenv("WG_PREFIX", None)
chenych's avatar
chenych committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

        # when decorator @ray.remote applies, __new__ will be called while we don't want to apply _configure_before_init
        if None not in [rank, worker_group_prefix] and "ActorClass(" not in cls.__name__:
            instance._configure_before_init(f"{worker_group_prefix}_register_center", int(rank))

        return instance

    def _configure_before_init(self, register_center_name: str, rank: int):
        assert isinstance(rank, int), f"rank must be int, instead of {type(rank)}"

        if rank == 0:
            master_addr, master_port = self.get_availale_master_addr_port()
            rank_zero_info = {
                "MASTER_ADDR": master_addr,
                "MASTER_PORT": master_port,
            }
            self.register_center = create_worker_group_register_center(name=register_center_name, info=rank_zero_info)
            os.environ.update(rank_zero_info)

    def __init__(self, cuda_visible_devices=None) -> None:
        # construct a meta from envrionment variable. Note that the import must be inside the class because it is executed remotely
chenych's avatar
chenych committed
127
128
        world_size = int(os.getenv("WORLD_SIZE"))
        rank = int(os.getenv("RANK"))
chenych's avatar
chenych committed
129
130
131
        self._rank = rank
        self._world_size = world_size

chenych's avatar
chenych committed
132
133
134
135
136
137
        if "AMD" in torch.cuda.get_device_name():
            os.environ["CUDA_VISIBLE_DEVICES"] = os.getenv("ROCR_VISIBLE_DEVICES")
            os.environ["LOCAL_RANK"] = os.getenv("RAY_LOCAL_RANK")
            cuda_visible_devices = os.getenv("LOCAL_RANK", "0")
            torch.cuda.set_device(int(cuda_visible_devices))

chenych's avatar
chenych committed
138
139
140
141
142
143
144
145
        ## for DCU K100_AI, 通过 torch.cuda.get_device_name() 获取 device_name
        if "K500SM_AI" in torch.cuda.get_device_name():
            print("Init DCU Devices")
            os.environ["CUDA_VISIBLE_DEVICES"] = os.getenv("HIP_VISIBLE_DEVICES")
            os.environ["LOCAL_RANK"] = os.getenv("RAY_LOCAL_RANK")
            cuda_visible_devices = os.getenv("LOCAL_RANK", "0")
            torch.cuda.set_device(int(cuda_visible_devices))

chenych's avatar
chenych committed
146
147
        master_addr = os.getenv("MASTER_ADDR")
        master_port = os.getenv("MASTER_PORT")
chenych's avatar
chenych committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

        local_world_size = int(os.getenv("LOCAL_WORLD_SIZE", "1"))
        local_rank = int(os.getenv("LOCAL_RANK", "0"))

        store = {
            "_world_size": world_size,
            "_rank": rank,
            "_local_world_size": local_world_size,
            "_local_rank": local_rank,
            "_master_addr": master_addr,
            "_master_port": master_port,
        }
        if cuda_visible_devices is not None:
            store["_cuda_visible_devices"] = cuda_visible_devices

        meta = WorkerMeta(store=store)
        self._configure_with_meta(meta=meta)

    def _configure_with_meta(self, meta: WorkerMeta):
        """
        This function should only be called inside by WorkerGroup
        """
        assert isinstance(meta, WorkerMeta)
        self.__dict__.update(meta.to_dict())  # this is hacky
        # print(f"__dict__: {self.__dict__}")
        for key in WorkerMeta.keys:
            val = self.__dict__.get(f"_{key.lower()}", None)
            if val is not None:
                # print(f"set {key} to {val}")
                os.environ[key] = str(val)
chenych's avatar
chenych committed
178

chenych's avatar
chenych committed
179
180
181
182
183
184
185
186
        os.environ["REDIS_STORE_SERVER_HOST"] = (
            str(self._master_addr).replace("[", "").replace("]", "") if self._master_addr else ""
        )

    def get_master_addr_port(self):
        return self._master_addr, self._master_port

    def get_cuda_visible_devices(self):
chenych's avatar
chenych committed
187
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", "not set")
chenych's avatar
chenych committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        return cuda_visible_devices

    def print_rank0(self, *args, **kwargs):
        if self.rank == 0:
            print(*args, **kwargs)

    @property
    def world_size(self):
        return self._world_size

    @property
    def rank(self):
        return self._rank

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO_WITH_FUNC)
    def execute_with_func_generator(self, func, *args, **kwargs):
        ret_proto = func(self, *args, **kwargs)
        return ret_proto

    @register(dispatch_mode=Dispatch.ALL_TO_ALL, execute_mode=Execute.RANK_ZERO)
    def execute_func_rank_zero(self, func, *args, **kwargs):
        result = func(*args, **kwargs)
        return result