fsdp_workers.py 24.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The main entry point to run the PPO algorithm
"""

chenych's avatar
chenych committed
18
from typing import Literal, Optional, Union
chenych's avatar
chenych committed
19

chenych's avatar
chenych committed
20
21
import numpy as np
import psutil
chenych's avatar
chenych committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.distributed as dist
from accelerate import init_empty_weights
from codetiming import Timer
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import CPUOffload, MixedPrecision, ShardingStrategy
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoModelForTokenClassification,
    AutoModelForVision2Seq,
    GenerationConfig,
    PreTrainedModel,
)
from transformers.modeling_utils import no_init_weights

chenych's avatar
chenych committed
39
40
41
42
43
44
45
from ..models.monkey_patch import apply_ulysses_patch
from ..protocol import DataProto
from ..single_controller.base import Worker
from ..single_controller.base.decorator import Dispatch, register
from ..utils.checkpoint.fsdp_checkpoint_manager import FSDPCheckpointManager
from ..utils.flops_counter import FlopsCounter
from ..utils.fsdp_utils import (
chenych's avatar
chenych committed
46
47
48
49
50
51
52
    get_fsdp_wrap_policy,
    get_init_fn,
    load_fsdp_model,
    load_fsdp_optimizer,
    offload_fsdp_model,
    offload_fsdp_optimizer,
)
chenych's avatar
chenych committed
53
54
55
56
57
from ..utils.model_utils import print_gpu_memory_usage, print_model_size
from ..utils.tokenizer import get_processor, get_tokenizer
from ..utils.torch_dtypes import PrecisionType
from ..utils.torch_functional import AnyPrecisionAdamW, get_constant_schedule_with_warmup
from .config import ActorConfig, CriticConfig, FSDPConfig, ModelConfig, OptimConfig, RefConfig, WorkerConfig
chenych's avatar
Update  
chenych committed
58
from .rollout import vLLMRollout
chenych's avatar
chenych committed
59
60
from .sharding_manager import FSDPVLLMShardingManager
from .sharding_manager.fsdp_ulysses import FSDPUlyssesShardingManager
chenych's avatar
chenych committed
61
62
63
64
65
66
67
68
69
70


class FSDPWorker(Worker):
    def __init__(
        self,
        config: WorkerConfig,
        role: Literal["actor", "critic", "rollout", "ref", "actor_rollout", "actor_rollout_ref"],
    ):
        super().__init__()
        self.config = config
chenych's avatar
chenych committed
71
        self.role = role
chenych's avatar
chenych committed
72
73
74
75

        if not dist.is_initialized():
            dist.init_process_group(backend="nccl")

chenych's avatar
Update  
chenych committed
76
77
78
79
        # improve numerical stability
        torch.backends.cuda.matmul.allow_tf32 = False
        torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False

chenych's avatar
chenych committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        self._is_actor = self.role in ["actor", "actor_rollout", "actor_rollout_ref"]
        self._is_critic = self.role == "critic"
        self._is_rollout = self.role in ["rollout", "actor_rollout", "actor_rollout_ref"]
        self._is_ref = self.role in ["ref", "actor_rollout_ref"]

        self._use_param_offload = False
        self._use_optimizer_offload = False
        if self._is_actor:
            self._use_param_offload = self.config.actor.offload.offload_params
            self._use_optimizer_offload = self.config.actor.offload.offload_optimizer
            self._init_config(self.config.actor, "actor")
        elif self._is_critic:
            self._use_param_offload = self.config.critic.offload.offload_params
            self._use_optimizer_offload = self.config.critic.offload.offload_optimizer
            self._init_config(self.config.critic, "critic")
        elif self._is_ref:  # NOTE: it seems that manual offload is slower than FSDP offload
            self._use_param_offload = self.config.ref.offload.offload_params
            self._init_config(self.config.ref, "ref")

    def _init_config(
        self, config: Union[ActorConfig, CriticConfig, RefConfig], role: Literal["actor", "critic", "ref"]
    ):
chenych's avatar
chenych committed
102
        world_size = dist.get_world_size()
chenych's avatar
chenych committed
103
104
105
106
107
108
109
        fsdp_size = config.fsdp.fsdp_size
        if fsdp_size <= 0 or fsdp_size >= world_size:
            self.device_mesh = init_device_mesh("cuda", mesh_shape=(world_size,), mesh_dim_names=("fsdp",))
        else:  # hsdp
            self.device_mesh = init_device_mesh(
                "cuda", mesh_shape=(world_size // fsdp_size, fsdp_size), mesh_dim_names=("ddp", "fsdp")
            )
chenych's avatar
chenych committed
110

chenych's avatar
chenych committed
111
        if config.ulysses_sequence_parallel_size > 1:
chenych's avatar
chenych committed
112
113
            self.ulysses_device_mesh = init_device_mesh(
                "cuda",
chenych's avatar
chenych committed
114
115
116
117
118
                mesh_shape=(
                    world_size // config.ulysses_sequence_parallel_size,
                    config.ulysses_sequence_parallel_size,
                ),
                mesh_dim_names=("dp", "sp"),
chenych's avatar
chenych committed
119
120
121
122
123
124
            )
        else:
            self.ulysses_device_mesh = None

        self.ulysses_sharding_manager = FSDPUlyssesShardingManager(self.ulysses_device_mesh)

chenych's avatar
chenych committed
125
126
        if not hasattr(config, "global_batch_size"):  # ref model
            return
chenych's avatar
chenych committed
127

chenych's avatar
chenych committed
128
129
130
        if self.config.rollout.n > 1:
            config.global_batch_size *= self.config.rollout.n
            self.print_rank0(f"{role} will use global batch size {config.global_batch_size}.")
chenych's avatar
chenych committed
131

chenych's avatar
chenych committed
132
133
134
135
        config.global_batch_size_per_device = (
            config.global_batch_size // self.device_mesh.size() * config.ulysses_sequence_parallel_size
        )
        if config.global_batch_size_per_device == 0:
chenych's avatar
Update  
chenych committed
136
            raise ValueError(f"{role} global batch size * ulysses size must be larger than num gpus.")
chenych's avatar
chenych committed
137
138
139
140
141
142
143
144
145

        if config.global_batch_size_per_device % config.micro_batch_size_per_device_for_update != 0:
            raise ValueError(f"{role} global batch size per device must be divisible by the micro batch size.")

        if (
            config.fsdp.enable_cpu_offload
            and config.global_batch_size_per_device != config.micro_batch_size_per_device_for_update
        ):
            raise ValueError(f"{role} cannot use FSDP's CPU offload when gradient accumulation is enabled.")
chenych's avatar
chenych committed
146
147
148
149
150

    def _build_model_optimizer(
        self,
        model_config: ModelConfig,
        fsdp_config: FSDPConfig,
chenych's avatar
chenych committed
151
        optim_config: Optional[OptimConfig],
chenych's avatar
chenych committed
152
153
        padding_free: bool = False,
    ) -> None:
chenych's avatar
chenych committed
154
155
156
157
158
159
160
161
162
163
        self.tokenizer = get_tokenizer(
            model_config.tokenizer_path,
            trust_remote_code=model_config.trust_remote_code,
            use_fast=True,
        )
        self.processor = get_processor(
            model_config.tokenizer_path,
            trust_remote_code=model_config.trust_remote_code,
            use_fast=True,
        )
chenych's avatar
chenych committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        self.model_config = AutoConfig.from_pretrained(
            model_config.model_path,
            trust_remote_code=model_config.trust_remote_code,
            bos_token_id=self.tokenizer.bos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            **model_config.override_config,
        )

        try:
            self.generation_config = GenerationConfig.from_pretrained(model_config.model_path)
        except Exception:
            self.generation_config = GenerationConfig.from_model_config(self.model_config)

        self.print_rank0(f"Model config: {self.model_config}")

        if padding_free:
chenych's avatar
chenych committed
181
182
            apply_ulysses_patch(self.model_config.model_type)
            self.print_rank0("Ulysses patch applied!")
chenych's avatar
chenych committed
183
184
185
186
187
188
189
190
191
192
193
194
195

        if fsdp_config.torch_dtype is None:
            torch_dtype = torch.float32 if self._is_actor or self._is_critic else torch.bfloat16
        else:
            torch_dtype = PrecisionType.to_dtype(fsdp_config.torch_dtype)

        if self._is_critic:
            auto_class = AutoModelForTokenClassification
        elif type(self.model_config) in AutoModelForVision2Seq._model_mapping.keys():
            auto_class = AutoModelForVision2Seq
        else:
            auto_class = AutoModelForCausalLM

chenych's avatar
chenych committed
196
        if (not fsdp_config.enable_rank0_init) or self.device_mesh.get_local_rank("fsdp") == 0:
chenych's avatar
chenych committed
197
198
199
200
201
            model = auto_class.from_pretrained(
                model_config.model_path,
                config=self.model_config,
                torch_dtype=torch_dtype,
                attn_implementation="flash_attention_2",
chenych's avatar
chenych committed
202
                device_map="cpu" if fsdp_config.enable_rank0_init else "cuda",
chenych's avatar
chenych committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                low_cpu_mem_usage=True,
                trust_remote_code=model_config.trust_remote_code,
            )
        else:
            with no_init_weights(), init_empty_weights():
                model = auto_class.from_config(
                    self.model_config,
                    torch_dtype=torch_dtype,
                    attn_implementation="flash_attention_2",
                    trust_remote_code=model_config.trust_remote_code,
                )

        assert isinstance(model, PreTrainedModel)  # lint
        model.tie_weights()  # avoid hanging
        model = model.to(torch_dtype)
        if model_config.enable_gradient_checkpointing:
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})

chenych's avatar
chenych committed
221
222
223
224
225
226
227
228
229
230
        if not (self._is_actor or self._is_critic):
            model.requires_grad_(False)

        if model_config.freeze_vision_tower:
            if hasattr(model, "visual"):
                model.visual.requires_grad_(False)
                fsdp_config.use_orig_params = True
                self.print_rank0("Vision tower is set to not trainable.")
            else:
                self.print_rank0("No vision tower found.")
chenych's avatar
chenych committed
231

chenych's avatar
chenych committed
232
233
234
        dist.barrier()
        print_model_size(model)
        print_gpu_memory_usage("After huggingface model init")
chenych's avatar
chenych committed
235
236
237
238
239
240
        mixed_precision = MixedPrecision(
            param_dtype=PrecisionType.to_dtype(fsdp_config.mp_param_dtype),
            reduce_dtype=PrecisionType.to_dtype(fsdp_config.mp_reduce_dtype),
            buffer_dtype=PrecisionType.to_dtype(fsdp_config.mp_buffer_dtype),
        )
        auto_wrap_policy = get_fsdp_wrap_policy(model)
chenych's avatar
chenych committed
241
242
243
244
245
246
247
        self.print_rank0(f"FSDP wrap policy: {auto_wrap_policy}.")

        if self.device_mesh.ndim == 2:
            if fsdp_config.enable_full_shard:
                sharding_strategy = ShardingStrategy.HYBRID_SHARD
            else:
                sharding_strategy = ShardingStrategy._HYBRID_SHARD_ZERO2
chenych's avatar
chenych committed
248
        else:
chenych's avatar
chenych committed
249
250
251
252
            if fsdp_config.enable_full_shard:
                sharding_strategy = ShardingStrategy.FULL_SHARD
            else:
                sharding_strategy = ShardingStrategy.SHARD_GRAD_OP
chenych's avatar
chenych committed
253

chenych's avatar
chenych committed
254
255
        if fsdp_config.enable_cpu_offload:
            cpu_offload = CPUOffload(offload_params=True)
chenych's avatar
chenych committed
256
257
258
        else:
            cpu_offload = None

chenych's avatar
chenych committed
259
260
261
262
263
264
        if fsdp_config.enable_rank0_init:
            sync_module_states = True
            param_init_fn = get_init_fn(model, device="cuda") if self.rank != 0 else None
        else:
            sync_module_states = False
            param_init_fn = None
chenych's avatar
update  
chenych committed
265
266
267
        ## TODO: 模型指定到卡
        rank = torch.cuda.set_device(self.rank)
        model = model.to(rank)
chenych's avatar
chenych committed
268
269
270
271
272
273
274

        self.fsdp_module = FSDP(
            model,
            sharding_strategy=sharding_strategy,
            cpu_offload=cpu_offload,
            auto_wrap_policy=auto_wrap_policy,
            mixed_precision=mixed_precision,
chenych's avatar
chenych committed
275
            param_init_fn=param_init_fn,
chenych's avatar
chenych committed
276
            device_id=torch.cuda.current_device(),
chenych's avatar
chenych committed
277
            sync_module_states=sync_module_states,
chenych's avatar
chenych committed
278
            forward_prefetch=False,
chenych's avatar
chenych committed
279
            use_orig_params=fsdp_config.use_orig_params,
chenych's avatar
chenych committed
280
281
            device_mesh=self.device_mesh,
        )
chenych's avatar
chenych committed
282
        print_gpu_memory_usage("After FSDP module init")
chenych's avatar
chenych committed
283
284

        if self._is_actor or self._is_critic:
chenych's avatar
chenych committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
            if optim_config.strategy == "adamw":
                self.optimizer = torch.optim.AdamW(
                    self.fsdp_module.parameters(),
                    lr=optim_config.lr,
                    betas=optim_config.betas,
                    weight_decay=optim_config.weight_decay,
                    fused=True,
                )
            elif optim_config.strategy == "adamw_bf16":
                self.optimizer = AnyPrecisionAdamW(
                    self.fsdp_module.parameters(),
                    lr=optim_config.lr,
                    betas=optim_config.betas,
                    weight_decay=optim_config.weight_decay,
                )
            else:
                raise NotImplementedError(f"Optimizer {optim_config.strategy} not supported.")

            num_warmup_steps = int(optim_config.lr_warmup_ratio * optim_config.training_steps)
chenych's avatar
chenych committed
304
305
306
            self.lr_scheduler = get_constant_schedule_with_warmup(
                optimizer=self.optimizer, num_warmup_steps=num_warmup_steps
            )
chenych's avatar
chenych committed
307
            print_gpu_memory_usage("After optimizer init")
chenych's avatar
chenych committed
308
309
310
311
312
313
314
        else:
            self.optimizer, self.lr_scheduler = None, None

    def _build_rollout(self) -> None:
        tp_size = self.config.rollout.tensor_parallel_size
        dp_size = self.world_size // tp_size
        assert self.world_size % tp_size == 0, (
chenych's avatar
chenych committed
315
            f"rollout world size: {self.world_size} is not divisible by tp size: {tp_size}"
chenych's avatar
chenych committed
316
        )
chenych's avatar
chenych committed
317
        rollout_device_mesh = init_device_mesh("cuda", mesh_shape=(dp_size, tp_size), mesh_dim_names=("dp", "tp"))
chenych's avatar
chenych committed
318
319
320
321
322
323
324
325
326
327
        self.rollout = vLLMRollout(
            model_path=self.config.actor.model.model_path,
            config=self.config.rollout,
            tokenizer=self.tokenizer,
        )
        self.rollout_sharding_manager = FSDPVLLMShardingManager(
            module=self.fsdp_module,
            inference_engine=self.rollout.inference_engine,
            device_mesh=rollout_device_mesh,
        )
chenych's avatar
chenych committed
328
        print_gpu_memory_usage("After vllm init")
chenych's avatar
chenych committed
329
330
331
332
333
334
335
336

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
    def init_model(self):
        if self._is_critic:
            model_config = self.config.critic.model
            fsdp_config = self.config.critic.fsdp
            optim_config = self.config.critic.optim
            padding_free = self.config.critic.padding_free
chenych's avatar
chenych committed
337
338
            role = "critic"
        elif self._is_actor:
chenych's avatar
chenych committed
339
340
341
342
            model_config = self.config.actor.model
            fsdp_config = self.config.actor.fsdp
            optim_config = self.config.actor.optim
            padding_free = self.config.actor.padding_free
chenych's avatar
chenych committed
343
344
345
346
347
348
349
350
351
            role = "actor"
        elif self._is_ref:
            model_config = self.config.actor.model
            fsdp_config = self.config.ref.fsdp
            optim_config = None
            padding_free = self.config.ref.padding_free
            role = "ref"
        else:
            raise ValueError(f"Unknown role {role}.")
chenych's avatar
chenych committed
352
353
354
355
356
357
358
359

        if self._is_actor or self._is_critic or self._is_ref:
            self._build_model_optimizer(
                model_config=model_config,
                fsdp_config=fsdp_config,
                optim_config=optim_config,
                padding_free=padding_free,
            )
chenych's avatar
chenych committed
360
361
362
363
364
            if self._use_param_offload:
                offload_fsdp_model(self.fsdp_module)
                print_gpu_memory_usage(f"After offload {role} model during init")

            if self._use_optimizer_offload:
chenych's avatar
chenych committed
365
                offload_fsdp_optimizer(optimizer=self.optimizer)
chenych's avatar
chenych committed
366
                print_gpu_memory_usage(f"After offload {role} optimizer during init")
chenych's avatar
chenych committed
367
368

        if self._is_actor:
chenych's avatar
update  
chenych committed
369
370
            from .actor.dp_actor import DataParallelPPOActor  # lazy import

chenych's avatar
chenych committed
371
372
373
374
375
376
377
            self.actor = DataParallelPPOActor(
                config=self.config.actor,
                actor_module=self.fsdp_module,
                actor_optimizer=self.optimizer,
            )

        if self._is_critic:
chenych's avatar
update  
chenych committed
378
379
            from .critic.dp_critic import DataParallelPPOCritic  # lazy import

chenych's avatar
chenych committed
380
381
382
383
384
385
386
387
388
389
            self.critic = DataParallelPPOCritic(
                config=self.config,
                critic_module=self.fsdp_module,
                critic_optimizer=self.optimizer,
            )

        if self._is_rollout:
            self._build_rollout()

        if self._is_ref:
chenych's avatar
update  
chenych committed
390
391
            from .actor.dp_actor import DataParallelPPOActor  # lazy import

chenych's avatar
chenych committed
392
393
394
395
            self.ref_policy = DataParallelPPOActor(
                config=self.config.ref,
                actor_module=self.fsdp_module,
            )
chenych's avatar
chenych committed
396
397
398
399
400
401
402

        if self._is_actor or self._is_critic:
            self.flops_counter = FlopsCounter(self.model_config)
            self.checkpoint_manager = FSDPCheckpointManager(
                model=self.fsdp_module,
                optimizer=self.optimizer,
                lr_scheduler=self.lr_scheduler,
chenych's avatar
chenych committed
403
                processing_class=self.processor if self.processor is not None else self.tokenizer,
chenych's avatar
chenych committed
404
405
406
            )

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
chenych's avatar
chenych committed
407
    def save_checkpoint(self, path: str):
chenych's avatar
chenych committed
408
409
410
411
        assert self._is_actor or self._is_critic
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

chenych's avatar
chenych committed
412
        self.checkpoint_manager.save_checkpoint(path)
chenych's avatar
chenych committed
413
414
415
416
417
        dist.barrier()
        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

    @register(dispatch_mode=Dispatch.ONE_TO_ALL)
chenych's avatar
chenych committed
418
    def load_checkpoint(self, path: str):
chenych's avatar
chenych committed
419
420
421
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

chenych's avatar
chenych committed
422
        self.checkpoint_manager.load_checkpoint(path)
chenych's avatar
chenych committed
423
424
425
426
        dist.barrier()
        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

chenych's avatar
Update  
chenych committed
427
        if self._use_optimizer_offload:  # avoid OOM in resuming
chenych's avatar
chenych committed
428
            offload_fsdp_optimizer(self.optimizer)
chenych's avatar
chenych committed
429
430
431
432

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def update_actor(self, data: DataProto):
        assert self._is_actor
chenych's avatar
chenych committed
433
        data = data.to(torch.cuda.current_device())
chenych's avatar
chenych committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        if self._use_optimizer_offload:
            load_fsdp_optimizer(optimizer=self.optimizer)

        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data=data)
            with Timer(name="update_policy", logger=None) as timer:
                metrics = self.actor.update_policy(data=data)

            delta_time = timer.last
            global_num_tokens = data.meta_info["global_token_num"]
            estimated_flops, promised_flops = self.flops_counter.estimate_flops(global_num_tokens, delta_time)
chenych's avatar
chenych committed
449
450
451
452
453
454
455
456
457
458
            metrics["perf/mfu_actor"] = (
                estimated_flops * self.config.actor.ppo_epochs / (promised_flops * self.world_size)
            )
            metrics["perf/max_memory_allocated_gb"] = (
                torch.cuda.max_memory_allocated() - self.rollout_sharding_manager.freed_bytes
            ) / (1024**3)
            metrics["perf/max_memory_reserved_gb"] = (
                torch.cuda.max_memory_reserved() - self.rollout_sharding_manager.freed_bytes
            ) / (1024**3)
            metrics["perf/cpu_memory_used_gb"] = psutil.virtual_memory().used / (1024**3)
chenych's avatar
chenych committed
459
460
461
462
463

            self.lr_scheduler.step()
            lr = self.lr_scheduler.get_last_lr()[0]
            metrics["actor/lr"] = lr

chenych's avatar
chenych committed
464
465
466
467
468
469
            # Metrics should be in non_tensor_batch instead of meta_info, as DataProto not concat meta_info.
            output = DataProto(
                non_tensor_batch={
                    key: np.array([value] if np.isscalar(value) else value) for key, value in metrics.items()
                }
            )
chenych's avatar
chenych committed
470
471
472
473
474
475
476

        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

        if self._use_optimizer_offload:
            offload_fsdp_optimizer(optimizer=self.optimizer)

chenych's avatar
chenych committed
477
        output = output.to("cpu")
chenych's avatar
chenych committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def generate_sequences(self, prompts: DataProto):
        assert self._is_rollout

        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        meta_info = {
            "eos_token_id": self.generation_config.eos_token_id
            if self.generation_config is not None
            else self.tokenizer.eos_token_id,
            "pad_token_id": self.generation_config.pad_token_id
            if self.generation_config is not None
            else self.tokenizer.pad_token_id,
        }
        prompts.meta_info.update(meta_info)
        with self.rollout_sharding_manager:
            # after parameters sync with rollout, offload actor model to CPU
            if self._use_param_offload:
                offload_fsdp_model(self.fsdp_module)

            if self._use_optimizer_offload:
                offload_fsdp_optimizer(optimizer=self.optimizer)

            prompts = self.rollout_sharding_manager.preprocess_data(prompts)
            output = self.rollout.generate_sequences(prompts=prompts)
            output = self.rollout_sharding_manager.postprocess_data(output)

        output = output.to("cpu")
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
chenych's avatar
chenych committed
512
    def compute_log_probs(self, data: DataProto):
chenych's avatar
chenych committed
513
        assert self._is_actor
chenych's avatar
chenych committed
514
        data = data.to(torch.cuda.current_device())
chenych's avatar
chenych committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        # we should always recompute old_log_probs when it is HybridEngine
        data.meta_info["temperature"] = self.config.rollout.temperature
        # perform recompute log_prob
        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data)
            output = self.actor.compute_log_prob(data=data)
            output = DataProto.from_dict(
                tensors={"old_log_probs": output}, meta_info={"temperature": self.config.rollout.temperature}
            )
            output = self.ulysses_sharding_manager.postprocess_data(output)

        # https://pytorch.org/docs/stable/notes/fsdp.html#fsdp-notes
        # unshard the root FSDP module
        if self.world_size > 1:
            self.fsdp_module._handle.reshard(True)

        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

chenych's avatar
chenych committed
537
        output = output.to("cpu")
chenych's avatar
chenych committed
538
539
540
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
chenych's avatar
chenych committed
541
    def compute_ref_log_probs(self, data: DataProto):
chenych's avatar
chenych committed
542
        assert self._is_ref
chenych's avatar
chenych committed
543
        data = data.to(torch.cuda.current_device())
chenych's avatar
chenych committed
544
545
546
547
548
549
550
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        data.meta_info["temperature"] = self.config.rollout.temperature
        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data)
            output = self.ref_policy.compute_log_prob(data=data)
chenych's avatar
chenych committed
551
            output = DataProto.from_dict(tensors={"ref_log_probs": output})
chenych's avatar
chenych committed
552
553
554
555
556
557
558
559
560
561
            output = self.ulysses_sharding_manager.postprocess_data(output)

        # https://pytorch.org/docs/stable/notes/fsdp.html#fsdp-notes
        # unshard the root FSDP module
        if self.world_size > 1:
            self.fsdp_module._handle.reshard(True)

        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

chenych's avatar
chenych committed
562
        output = output.to("cpu")
chenych's avatar
chenych committed
563
564
565
566
567
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def compute_values(self, data: DataProto):
        assert self._is_critic
chenych's avatar
chenych committed
568
        data = data.to(torch.cuda.current_device())
chenych's avatar
chenych committed
569
570
571
572
573
574
575
576
577
578
579
580
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data=data)
            values = self.critic.compute_values(data=data)
            output = DataProto.from_dict(tensors={"values": values})
            output = self.ulysses_sharding_manager.postprocess_data(data=output)

        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

chenych's avatar
chenych committed
581
        output = output.to("cpu")
chenych's avatar
chenych committed
582
583
584
585
        return output

    @register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
    def update_critic(self, data: DataProto):
chenych's avatar
chenych committed
586
        data = data.to(torch.cuda.current_device())
chenych's avatar
chenych committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        if self._use_param_offload:
            load_fsdp_model(self.fsdp_module)

        if self._use_optimizer_offload:
            load_fsdp_optimizer(optimizer=self.optimizer)

        with self.ulysses_sharding_manager:
            data = self.ulysses_sharding_manager.preprocess_data(data=data)
            with Timer(name="update_critic", logger=None) as timer:
                metrics = self.critic.update_critic(data=data)

            delta_time = timer.last
            global_num_tokens = data.meta_info["global_token_num"]
            estimated_flops, promised_flops = self.flops_counter.estimate_flops(global_num_tokens, delta_time)
chenych's avatar
chenych committed
601
602
603
            metrics["perf/mfu_critic"] = (
                estimated_flops * self.config.actor.ppo_epochs / (promised_flops * self.world_size)
            )
chenych's avatar
chenych committed
604
605
606
607
608

            self.lr_scheduler.step()
            lr = self.lr_scheduler.get_last_lr()[0]
            metrics["critic/lr"] = lr

chenych's avatar
chenych committed
609
610
611
612
613
614
            # Metrics should be in non_tensor_batch instead of meta_info, as DataProto not concat meta_info.
            output = DataProto(
                non_tensor_batch={
                    metric: np.array([value] if np.isscalar(value) else value) for metric, value in metrics.items()
                }
            )
chenych's avatar
chenych committed
615
616
617
618
619
620
621

        if self._use_param_offload:
            offload_fsdp_model(self.fsdp_module)

        if self._use_optimizer_offload:
            offload_fsdp_optimizer(optimizer=self.optimizer)

chenych's avatar
chenych committed
622
        output = output.to("cpu")
chenych's avatar
chenych committed
623
        return output