torch_functional.py 13.6 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2024 Bytedance Ltd. and/or its affiliates
chenych's avatar
update  
chenych committed
2
# Copyright Meta Platforms, Inc. and affiliates
chenych's avatar
chenych committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contain small torch utilities
"""

chenych's avatar
chenych committed
19
from typing import List, Literal, Optional, Tuple, Union
chenych's avatar
chenych committed
20
21
22
23
24
25

import torch
import torch.distributed
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR

chenych's avatar
update  
chenych committed
26
27
from .torch_dtypes import PrecisionType

chenych's avatar
chenych committed
28
29
30
31
32
33
34
35
36

try:
    from flash_attn.ops.triton.cross_entropy import cross_entropy_loss

    FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE = True
except ImportError:
    FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE = False


chenych's avatar
chenych committed
37
38
39
40
41
42
43
@torch.compiler.disable()
def log_probs_from_logits_flash_attn(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
    output = cross_entropy_loss(logits, labels, inplace_backward=True)
    if not isinstance(output, tuple):
        raise ValueError(
            "please make sure flash-attn>=2.4.3 where cross_entropy_loss returns Tuple[losses, z_losses]."
        )
chenych's avatar
chenych committed
44
45
46
47

    return -output[0]


chenych's avatar
chenych committed
48
49
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
    """Compute log probs on the label ids given logits.
chenych's avatar
chenych committed
50

chenych's avatar
chenych committed
51
    We may use torch compile to speed up computing.
chenych's avatar
chenych committed
52

chenych's avatar
chenych committed
53
54
55
    Args:
        logits (torch.Tensor): logits of the model, shape (batch_size, seqlen, vocab_size)
        labels (torch.Tensor): labels of the model, shape (batch_size, seqlen)
chenych's avatar
chenych committed
56

chenych's avatar
chenych committed
57
58
    Returns:
        torch.Tensor: log probs of the labels, shape (batch_size, seqlen)
chenych's avatar
chenych committed
59
    """
chenych's avatar
chenych committed
60
61
62
63
64
65
66
67
    batch_dim = logits.shape[:-1]
    vocab_dim = logits.shape[-1]
    logits = logits.contiguous().view(-1, vocab_dim)
    labels = labels.contiguous().view(-1)
    if FLAH_ATTN_CROSS_ENTROPY_LOSS_AVAILABLE:
        output = log_probs_from_logits_flash_attn(logits, labels)
    else:  # fall back to torch kernel, upcast logits to fp32
        output = F.cross_entropy(logits.float(), labels, reduction="none")
chenych's avatar
chenych committed
68

chenych's avatar
chenych committed
69
    return output.view(*batch_dim)
chenych's avatar
chenych committed
70
71


chenych's avatar
chenych committed
72
def masked_mean(values: torch.Tensor, mask: torch.Tensor, dim: int = None, eps: float = 1e-8) -> torch.Tensor:
chenych's avatar
chenych committed
73
    """Compute mean of tensor with a masked values."""
chenych's avatar
chenych committed
74
    return (values * mask).sum(dim=dim) / (mask.sum(dim=dim) + eps)
chenych's avatar
chenych committed
75
76


chenych's avatar
chenych committed
77
def masked_var(values: torch.Tensor, mask: torch.Tensor, unbiased: bool = True) -> torch.Tensor:
chenych's avatar
chenych committed
78
79
80
81
82
83
    """Compute variance of tensor with masked values."""
    mean = masked_mean(values, mask)
    centered_values = values - mean
    variance = masked_mean(centered_values**2, mask)
    if unbiased:
        mask_sum = mask.sum()
chenych's avatar
chenych committed
84
85
86
87
        if mask_sum <= 1:
            print("The sum of the mask is less than one, which can cause a division by zero.")
            return variance

chenych's avatar
chenych committed
88
89
        bessel_correction = mask_sum / (mask_sum - 1)
        variance = variance * bessel_correction
chenych's avatar
chenych committed
90

chenych's avatar
chenych committed
91
92
93
    return variance


chenych's avatar
chenych committed
94
def masked_whiten(values: torch.Tensor, mask: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
chenych's avatar
chenych committed
95
96
    """Whiten values with masked values."""
    mean, var = masked_mean(values, mask), masked_var(values, mask)
chenych's avatar
chenych committed
97
    return (values - mean) * torch.rsqrt(var + eps)
chenych's avatar
chenych committed
98
99


chenych's avatar
Update  
chenych committed
100
101
102
def get_response_mask(
    response_ids: torch.Tensor, eos_token_id: Union[int, List[int]] = 2, dtype: torch.dtype = torch.long
):
chenych's avatar
chenych committed
103
104
105
106
107
    """Get the mask for the response ids, the mask will be 0 after the first eos token.

    eos_token_id can be int or list: 1 or [1, 2].
    ```
    e.g. eos_token = 1
chenych's avatar
Update  
chenych committed
108
109
    response_ids:  [0, 0, 2, 4, 3, 5, 1, 0, 0]
    response_mask: [1, 1, 1, 1, 1, 1, 1, 0, 0]
chenych's avatar
chenych committed
110
    ```
chenych's avatar
chenych committed
111
    """
chenych's avatar
chenych committed
112
113
    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]
chenych's avatar
chenych committed
114

chenych's avatar
Update  
chenych committed
115
    response_mask = torch.zeros_like(response_ids, dtype=torch.bool)
chenych's avatar
chenych committed
116
    for token_id in eos_token_id:
chenych's avatar
Update  
chenych committed
117
        response_mask |= response_ids.eq(token_id)
chenych's avatar
chenych committed
118

chenych's avatar
Update  
chenych committed
119
120
121
122
    response_mask = response_mask.long()
    response_mask = (torch.cumsum(response_mask, dim=1) - response_mask).bool()
    response_mask = torch.logical_not(response_mask).to(dtype)
    return response_mask
chenych's avatar
chenych committed
123
124


chenych's avatar
chenych committed
125
126
127
128
129
130
def pad_2d_list_to_length(
    response: List[List[int]], pad_token_id: int, max_length: Optional[int] = None
) -> torch.Tensor:
    """Pad a 2D list (e.g. responses, log_probs) to a 2D tensor."""
    max_response_length = max(len(sub_list) for sub_list in response)
    if max_length is not None and max_length > max_response_length:
chenych's avatar
chenych committed
131
132
        target_length = max_length
    else:
chenych's avatar
chenych committed
133
134
        target_length = max_response_length

chenych's avatar
chenych committed
135
136
137
138
139
    padded_response = [tuple(sub_list) + (pad_token_id,) * (target_length - len(sub_list)) for sub_list in response]
    tensor = torch.tensor(padded_response)
    return tensor


chenych's avatar
chenych committed
140
141
142
143
144
145
def pad_sequence_to_length(
    tensor: torch.Tensor, max_seq_len: int, pad_token_id: int, left_pad: bool = False
) -> torch.Tensor:
    """Pad a nD tensors in the last dim to max_seq_len."""
    if tensor.size(-1) >= max_seq_len:
        return tensor
chenych's avatar
chenych committed
146

chenych's avatar
chenych committed
147
148
149
150
    pad_shape = list(tensor.shape)
    pad_shape[-1] = max_seq_len - tensor.size(-1)
    pad_tensor = torch.full(pad_shape, fill_value=pad_token_id, dtype=tensor.dtype, device=tensor.device)
    return torch.cat((pad_tensor, tensor), dim=-1) if left_pad else torch.cat((tensor, pad_tensor), dim=-1)
chenych's avatar
chenych committed
151
152


chenych's avatar
chenych committed
153
154
155
156
def postprocess_data(
    input_ids: torch.Tensor,
    attention_mask: torch.Tensor,
    position_ids: torch.Tensor,
chenych's avatar
chenych committed
157
158
159
160
161
    max_length: int,
    pad_token_id: int,
    left_pad: bool = True,
    truncation: Literal["left", "right", "error"] = "error",
):
chenych's avatar
chenych committed
162
    """Pad or truncate data."""
chenych's avatar
chenych committed
163
    assert truncation in ["left", "right", "error"]
chenych's avatar
chenych committed
164
165
    seq_length = len(input_ids)
    if seq_length < max_length:
chenych's avatar
chenych committed
166
167
168
169
170
171
        input_ids = pad_sequence_to_length(
            input_ids, max_seq_len=max_length, pad_token_id=pad_token_id, left_pad=left_pad
        )
        attention_mask = pad_sequence_to_length(
            attention_mask, max_seq_len=max_length, pad_token_id=0, left_pad=left_pad
        )
chenych's avatar
chenych committed
172
173
174
175
176
177
        position_ids = pad_sequence_to_length(position_ids, max_seq_len=max_length, pad_token_id=0, left_pad=left_pad)
    elif seq_length > max_length:
        if truncation == "left":  # actually, left truncation may not be reasonable
            input_ids = input_ids[..., -max_length:]
            attention_mask = attention_mask[..., -max_length:]
            position_ids = position_ids[..., -max_length:]
chenych's avatar
chenych committed
178
        elif truncation == "right":
chenych's avatar
chenych committed
179
180
181
            input_ids = input_ids[..., :max_length]
            attention_mask = attention_mask[..., :max_length]
            position_ids = position_ids[..., :max_length]
chenych's avatar
chenych committed
182
        elif truncation == "error":
chenych's avatar
update  
chenych committed
183
            raise RuntimeError(f"Input sequence length {seq_length} is longer than max length {max_length}.")
chenych's avatar
chenych committed
184
        else:
chenych's avatar
chenych committed
185
            raise NotImplementedError(f"Unknown truncation method {truncation}.")
chenych's avatar
chenych committed
186

chenych's avatar
chenych committed
187
    return input_ids, attention_mask, position_ids
chenych's avatar
chenych committed
188
189
190


def get_constant_schedule_with_warmup(
chenych's avatar
chenych committed
191
    optimizer: torch.optim.Optimizer,
chenych's avatar
chenych committed
192
193
    num_warmup_steps: int,
    last_epoch: int = -1,
chenych's avatar
chenych committed
194
195
196
197
198
) -> torch.optim.lr_scheduler.LRScheduler:
    """Get the lr scheduler for constant lr."""

    def lr_lambda(current_step: int) -> float:
        return min(1.0, float(current_step) / float(max(1, num_warmup_steps)))
chenych's avatar
chenych committed
199
200
201
202

    return LambdaLR(optimizer, lr_lambda, last_epoch)


chenych's avatar
chenych committed
203
204
205
206
207
208
209
210
211
212
# https://github.com/meta-llama/llama-cookbook/blob/v0.0.5/src/llama_cookbook/policies/anyprecision_optimizer.py
class AnyPrecisionAdamW(torch.optim.Optimizer):
    def __init__(
        self,
        params: List[torch.Tensor],
        lr: float = 1e-3,
        betas: Tuple[float, float] = (0.9, 0.999),
        eps: float = 1e-8,
        weight_decay: float = 0.0,
        use_kahan_summation: bool = True,
chenych's avatar
update  
chenych committed
213
214
215
        momentum_dtype: str = "bfloat16",
        variance_dtype: str = "bfloat16",
        compensation_buffer_dtype: str = "bfloat16",
chenych's avatar
chenych committed
216
217
    ):
        """
chenych's avatar
update  
chenych committed
218
219
220
221
222
223
224
        AnyPrecisionAdamW: a flexible precision AdamW optimizer
        with optional Kahan summation for high precision weight updates.
        Allows direct control over momentum, variance and auxiliary compensation buffer dtypes.
        Optional Kahan summation is used to offset precision reduction for the weight updates.
        This allows full training in BFloat16 (equal or better than FP32 results in many cases)
        due to high precision weight updates.

chenych's avatar
chenych committed
225
        Args:
chenych's avatar
update  
chenych committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            params (iterable): iterable of parameters to optimize or dicts defining parameter groups
            lr (float, optional): learning rate (default: 1e-3)
            betas (Tuple[float, float], optional): coefficients used for computing
                running averages of gradient and its square (default: (0.9, 0.999))
            eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
            weight_decay (float, optional): weight decay coefficient (default: 1e-2)

            # Any Precision specific
            use_kahan_summation = creates auxiliary buffer to ensure high precision
            model param updates (default: False)
            momentum_dtype = dtype for momentum  (default: bfloat16)
            variance_dtype = dtype for uncentered variance (default: bfloat16)
            compensation_buffer_dtype = dtype for Kahan summation buffer (default: bfloat16)

            # Usage
            This optimizer implements optimizer states, and Kahan summation
            for high precision updates, all in user controlled dtypes.
            Defaults are variance in BF16, Momentum in FP32.
            This can be run in FSDP mixed precision, amp, or full precision,
            depending on what training pipeline you wish to work with.

            Setting to use_kahan_summation = False, and changing momentum and
            variance dtypes to FP32, reverts this to a standard AdamW optimizer.
chenych's avatar
chenych committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        """
        defaults = {
            "lr": lr,
            "betas": betas,
            "eps": eps,
            "weight_decay": weight_decay,
            "use_kahan_summation": use_kahan_summation,
            "momentum_dtype": momentum_dtype,
            "variance_dtype": variance_dtype,
            "compensation_buffer_dtype": compensation_buffer_dtype,
        }
        super().__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model and returns the loss.
        """

        if closure is not None:
            with torch.enable_grad():
                closure()

        for group in self.param_groups:
            beta1, beta2 = group["betas"]
            lr = group["lr"]
            weight_decay = group["weight_decay"]
            eps = group["eps"]
            use_kahan_summation = group["use_kahan_summation"]

chenych's avatar
update  
chenych committed
283
284
285
            momentum_dtype = PrecisionType.to_dtype(group["momentum_dtype"])
            variance_dtype = PrecisionType.to_dtype(group["variance_dtype"])
            compensation_buffer_dtype = PrecisionType.to_dtype(group["compensation_buffer_dtype"])
chenych's avatar
chenych committed
286
            for p in group["params"]:
chenych's avatar
update  
chenych committed
287
                assert isinstance(p, torch.Tensor)  # lint
chenych's avatar
chenych committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                if p.grad is None:
                    continue

                if p.grad.is_sparse:
                    raise RuntimeError("AnyPrecisionAdamW does not support sparse gradients.")

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    state["step"] = torch.tensor(0.0)

                    # momentum - EMA of gradient values
                    state["exp_avg"] = torch.zeros_like(p, dtype=momentum_dtype)

                    # variance uncentered - EMA of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(p, dtype=variance_dtype)

                    # optional Kahan summation - accumulated error tracker
                    if use_kahan_summation:
                        state["compensation"] = torch.zeros_like(p, dtype=compensation_buffer_dtype)

                # Main processing
                # update the steps for each param group update
                state["step"] += 1
                step = state["step"]

                exp_avg = state["exp_avg"]
                exp_avg_sq = state["exp_avg_sq"]
                grad = p.grad

                if weight_decay:  # weight decay, AdamW style
                    p.data.mul_(1 - lr * weight_decay)

                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)  # update momentum
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)  # update uncentered variance

                bias_correction1 = 1 - beta1**step  # adjust using bias1
                step_size = lr / bias_correction1

                denom_correction = (1 - beta2**step) ** 0.5  # adjust using bias2 and avoids math import
                centered_variance = (exp_avg_sq.sqrt() / denom_correction).add_(eps, alpha=1)

                if use_kahan_summation:  # lr update to compensation
                    compensation = state["compensation"]
                    compensation.addcdiv_(exp_avg, centered_variance, value=-step_size)

                    # update weights with compensation (Kahan summation)
                    # save error back to compensation for next iteration
                    temp_buffer = p.detach().clone()
                    p.data.add_(compensation)
                    compensation.add_(temp_buffer.sub_(p.data))
                else:  # usual AdamW updates
                    p.data.addcdiv_(exp_avg, centered_variance, value=-step_size)