fsdp_checkpoint_manager.py 4.56 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
chenych's avatar
chenych committed
16
from typing import Optional, Union
chenych's avatar
chenych committed
17
18

import torch
chenych's avatar
chenych committed
19
import torch.distributed as dist
chenych's avatar
update  
chenych committed
20
from torch.distributed.checkpoint.state_dict import StateDictOptions, get_state_dict, set_state_dict
chenych's avatar
chenych committed
21
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
chenych's avatar
chenych committed
22
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
chenych's avatar
chenych committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

from .checkpoint_manager import BaseCheckpointManager


class FSDPCheckpointManager(BaseCheckpointManager):
    """
    A checkpoint manager that saves and loads
    - model
    - optimizer
    - lr_scheduler
    - extra_states
    in a SPMD way.

    We save
    - sharded model states and optimizer states
    - full lr_scheduler states
    - huggingface tokenizer and config for ckpt merge
    """

    def __init__(
        self,
        model: FSDP,
        optimizer: torch.optim.Optimizer,
        lr_scheduler: torch.optim.lr_scheduler.LRScheduler,
chenych's avatar
chenych committed
47
        processing_class: Union[PreTrainedTokenizer, ProcessorMixin],
chenych's avatar
chenych committed
48
    ):
chenych's avatar
chenych committed
49
        super().__init__(model, optimizer, lr_scheduler, processing_class)
chenych's avatar
chenych committed
50

chenych's avatar
chenych committed
51
    def load_checkpoint(self, path: Optional[str] = None):
chenych's avatar
chenych committed
52
53
54
55
        if path is None:
            return

        # every rank download its own checkpoint
chenych's avatar
chenych committed
56
57
58
59
60
        model_path = os.path.join(path, f"model_world_size_{self.world_size}_rank_{self.rank}.pt")
        optim_path = os.path.join(path, f"optim_world_size_{self.world_size}_rank_{self.rank}.pt")
        extra_state_path = os.path.join(path, f"extra_state_world_size_{self.world_size}_rank_{self.rank}.pt")
        print(f"[rank-{self.rank}]: Loading from {model_path} and {optim_path} and {extra_state_path}.")
        model_state_dict = torch.load(model_path, weights_only=False)
chenych's avatar
update  
chenych committed
61
        optim_state_dict = torch.load(optim_path, weights_only=False)
chenych's avatar
chenych committed
62
        extra_state_dict = torch.load(extra_state_path, weights_only=False)
chenych's avatar
chenych committed
63

chenych's avatar
update  
chenych committed
64
65
66
67
68
69
70
71
72
        state_dict_options = StateDictOptions(cpu_offload=True)
        set_state_dict(
            model=self.model,
            optimizers=self.optimizer,
            model_state_dict=model_state_dict,
            optim_state_dict=optim_state_dict,
            options=state_dict_options,
        )
        self.lr_scheduler.load_state_dict(extra_state_dict["lr_scheduler"])
chenych's avatar
chenych committed
73

chenych's avatar
chenych committed
74
75
76
        # recover random state
        if "rng" in extra_state_dict:
            self.load_rng_state(extra_state_dict["rng"])
chenych's avatar
chenych committed
77

chenych's avatar
chenych committed
78
79
80
    def save_checkpoint(self, path: str):
        path = self.local_mkdir(path)
        dist.barrier()
chenych's avatar
chenych committed
81
82

        # every rank will save its own model and optim shard
chenych's avatar
update  
chenych committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        state_dict_options = StateDictOptions(cpu_offload=True)
        model_state_dict, optim_state_dict = get_state_dict(self.model, self.optimizer, options=state_dict_options)
        extra_state_dict = {
            "lr_scheduler": self.lr_scheduler.state_dict(),
            "rng": self.get_rng_state(),
        }
        model_path = os.path.join(path, f"model_world_size_{self.world_size}_rank_{self.rank}.pt")
        optim_path = os.path.join(path, f"optim_world_size_{self.world_size}_rank_{self.rank}.pt")
        extra_path = os.path.join(path, f"extra_state_world_size_{self.world_size}_rank_{self.rank}.pt")

        print(f"[rank-{self.rank}]: Saving model to {os.path.abspath(model_path)}.")
        print(f"[rank-{self.rank}]: Saving checkpoint to {os.path.abspath(model_path)}.")
        print(f"[rank-{self.rank}]: Saving extra_state to {os.path.abspath(extra_path)}.")
        torch.save(model_state_dict, model_path)
        torch.save(optim_state_dict, optim_path)
        torch.save(extra_state_dict, extra_path)
chenych's avatar
chenych committed
99
100

        # wait for everyone to dump to local
chenych's avatar
chenych committed
101
        dist.barrier()
chenych's avatar
chenych committed
102
103

        if self.rank == 0:
chenych's avatar
chenych committed
104
105
106
107
108
109
110
111
            hf_path = os.path.join(path, "huggingface")
            os.makedirs(hf_path, exist_ok=True)
            assert isinstance(self.model._fsdp_wrapped_module, PreTrainedModel)
            self.model._fsdp_wrapped_module.config.save_pretrained(hf_path)
            self.model._fsdp_wrapped_module.generation_config.save_pretrained(hf_path)
            self.processing_class.save_pretrained(hf_path)

        dist.barrier()