flops_counter.py 5.04 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
15
16
from typing import TYPE_CHECKING, List, Tuple

chenych's avatar
chenych committed
17
18
19
import torch


chenych's avatar
chenych committed
20
21
22
if TYPE_CHECKING:
    from transformers.models.llama.configuration_llama import LlamaConfig

chenych's avatar
chenych committed
23

chenych's avatar
chenych committed
24
VALID_MODLE_TYPE = {"llama", "qwen2", "qwen2_vl", "qwen2_5_vl", "qwen3"}
chenych's avatar
chenych committed
25

chenych's avatar
chenych committed
26
27
28

def get_device_flops(unit: str = "T") -> float:
    def unit_convert(number: float, level: str):
chenych's avatar
chenych committed
29
30
31
        units = ["B", "K", "M", "G", "T", "P"]
        if number <= 0:
            return number
chenych's avatar
chenych committed
32

chenych's avatar
chenych committed
33
34
35
36
        ptr = 0
        while ptr < len(units) and units[ptr] != level:
            number /= 1000
            ptr += 1
chenych's avatar
chenych committed
37

chenych's avatar
chenych committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        return number

    device_name = torch.cuda.get_device_name()
    flops = float("inf")  # INF flops for unkown gpu type
    if "H100" in device_name or "H800" in device_name:
        flops = 989e12
    elif "A100" in device_name or "A800" in device_name:
        flops = 312e12
    elif "L40" in device_name:
        flops = 181.05e12
    elif "L20" in device_name:
        flops = 119.5e12
    elif "H20" in device_name:
        flops = 148e12
    elif "910B" in device_name:
        flops = 354e12
    flops_unit = unit_convert(flops, unit)
    return flops_unit


class FlopsCounter:
    """
    Used to count mfu during training loop

    Example:
        flops_counter = FlopsCounter(config)
        flops_achieved, flops_promised = flops_counter.estimate_flops(tokens_list, delta_time)
    """

chenych's avatar
chenych committed
67
68
69
    def __init__(self, config: "LlamaConfig"):
        if config.model_type not in VALID_MODLE_TYPE:
            print(f"Only support {VALID_MODLE_TYPE}, but got {config.model_type}. MFU will always be zero.")
chenych's avatar
chenych committed
70

chenych's avatar
chenych committed
71
72
73
74
75
76
        self.estimate_func = {
            "llama": self._estimate_llama_flops,
            "qwen2": self._estimate_llama_flops,
            "qwen2_vl": self._estimate_llama_flops,
            "qwen2_5_vl": self._estimate_llama_flops,
        }
chenych's avatar
chenych committed
77
78
        self.config = config

chenych's avatar
chenych committed
79
    def _estimate_unknown_flops(self, tokens_sum: int, batch_seqlens: List[int], delta_time: float) -> float:
chenych's avatar
chenych committed
80
81
        return 0

chenych's avatar
chenych committed
82
    def _estimate_llama_flops(self, tokens_sum: int, batch_seqlens: List[int], delta_time: float) -> float:
chenych's avatar
chenych committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        hidden_size = self.config.hidden_size
        vocab_size = self.config.vocab_size
        num_hidden_layers = self.config.num_hidden_layers
        num_key_value_heads = self.config.num_key_value_heads
        num_attention_heads = self.config.num_attention_heads
        intermediate_size = self.config.intermediate_size

        head_dim = hidden_size // num_attention_heads
        q_size = num_attention_heads * head_dim
        k_size = num_key_value_heads * head_dim
        v_size = num_key_value_heads * head_dim

        # non-attn per layer parm
        # Qwen2/LLama use SwiGelu, gate, having up and down linear layer in mlp
        mlp_N = hidden_size * intermediate_size * 3
        attn_linear_N = hidden_size * (q_size + k_size + v_size + num_attention_heads * head_dim)
        emd_and_lm_head_N = vocab_size * hidden_size * 2
        # non-attn all_layer parm
        dense_N = (mlp_N + attn_linear_N) * num_hidden_layers + emd_and_lm_head_N
        # non-attn all_layer & all_token fwd & bwd flops
        dense_N_flops = 6 * dense_N * tokens_sum

        # attn all_layer & all_token fwd & bwd flops
        seqlen_square_sum = 0
        for seqlen in batch_seqlens:
            seqlen_square_sum += seqlen * seqlen
chenych's avatar
chenych committed
109

chenych's avatar
chenych committed
110
111
112
113
114
115
116
        attn_qkv_flops = 12 * seqlen_square_sum * head_dim * num_attention_heads * num_hidden_layers

        # all_layer & all_token fwd & bwd flops
        flops_all_token = dense_N_flops + attn_qkv_flops
        flops_achieved = flops_all_token * (1.0 / delta_time) / 1e12
        return flops_achieved

chenych's avatar
chenych committed
117
    def estimate_flops(self, batch_seqlens: List[int], delta_time: float) -> Tuple[float, float]:
chenych's avatar
chenych committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        """
        Estimate the FLOPS based on the number of valid tokens in the current batch and the time taken.

        Args:
            batch_seqlens (List[int]): A list where each element represents the number of valid tokens in the current batch.
            delta_time (float): The time taken to process the batch, in seconds.

        Returns:
            estimated_flops (float): The estimated FLOPS based on the input tokens and time.
            promised_flops (float): The expected FLOPS of the current device.
        """
        tokens_sum = sum(batch_seqlens)
        func = self.estimate_func.get(self.config.model_type, self._estimate_unknown_flops)
        estimated_flops = func(tokens_sum, batch_seqlens, delta_time)
        promised_flops = get_device_flops()
        return estimated_flops, promised_flops