model.py 19.9 KB
Newer Older
mrfakename's avatar
mrfakename committed
1
from transformers import T5EncoderModel, T5TokenizerFast
hungchiayu1's avatar
hungchiayu1 committed
2
import torch
mrfakename's avatar
mrfakename committed
3
from diffusers import FluxTransformer2DModel
hungchiayu1's avatar
hungchiayu1 committed
4
from torch import nn
mrfakename's avatar
mrfakename committed
5
import random
hungchiayu1's avatar
hungchiayu1 committed
6
7
8
9
10
11
12
13
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm

mrfakename's avatar
mrfakename committed
14
from typing import Optional, Union, List
hungchiayu1's avatar
hungchiayu1 committed
15
16
17
18
19
20
21
22
from datasets import load_dataset, Audio
from math import pi
import inspect
import yaml


class StableAudioPositionalEmbedding(nn.Module):
    """Used for continuous time
mrfakename's avatar
mrfakename committed
23
    Adapted from Stable Audio Open.
hungchiayu1's avatar
hungchiayu1 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    """

    def __init__(self, dim: int):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.randn(half_dim))

    def forward(self, times: torch.Tensor) -> torch.Tensor:
        times = times[..., None]
        freqs = times * self.weights[None] * 2 * pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((times, fouriered), dim=-1)
        return fouriered
mrfakename's avatar
mrfakename committed
38
39


hungchiayu1's avatar
hungchiayu1 committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class DurationEmbedder(nn.Module):
    """
    A simple linear projection model to map numbers to a latent space.

    Code is adapted from
    https://github.com/Stability-AI/stable-audio-tools

    Args:
        number_embedding_dim (`int`):
            Dimensionality of the number embeddings.
        min_value (`int`):
            The minimum value of the seconds number conditioning modules.
        max_value (`int`):
            The maximum value of the seconds number conditioning modules
        internal_dim (`int`):
            Dimensionality of the intermediate number hidden states.
    """

    def __init__(
        self,
        number_embedding_dim,
        min_value,
        max_value,
        internal_dim: Optional[int] = 256,
    ):
        super().__init__()
        self.time_positional_embedding = nn.Sequential(
            StableAudioPositionalEmbedding(internal_dim),
            nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
        )

        self.number_embedding_dim = number_embedding_dim
        self.min_value = min_value
        self.max_value = max_value
mrfakename's avatar
mrfakename committed
74
        self.dtype = torch.float32
hungchiayu1's avatar
hungchiayu1 committed
75
76
77
78
79
80
81

    def forward(
        self,
        floats: torch.Tensor,
    ):
        floats = floats.clamp(self.min_value, self.max_value)

mrfakename's avatar
mrfakename committed
82
83
84
        normalized_floats = (floats - self.min_value) / (
            self.max_value - self.min_value
        )
hungchiayu1's avatar
hungchiayu1 committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        # Cast floats to same type as embedder
        embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
        normalized_floats = normalized_floats.to(embedder_dtype)

        embedding = self.time_positional_embedding(normalized_floats)
        float_embeds = embedding.view(-1, 1, self.number_embedding_dim)

        return float_embeds


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):

    if timesteps is not None and sigmas is not None:
mrfakename's avatar
mrfakename committed
106
107
108
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
hungchiayu1's avatar
hungchiayu1 committed
109
    if timesteps is not None:
mrfakename's avatar
mrfakename committed
110
111
112
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
hungchiayu1's avatar
hungchiayu1 committed
113
114
115
116
117
118
119
120
121
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
mrfakename's avatar
mrfakename committed
122
123
124
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
hungchiayu1's avatar
hungchiayu1 committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class TangoFlux(nn.Module):

mrfakename's avatar
mrfakename committed
141
    def __init__(self, config, initialize_reference_model=False):
hungchiayu1's avatar
hungchiayu1 committed
142
143

        super().__init__()
mrfakename's avatar
mrfakename committed
144
145
146
147
148
149
150
151
152
153
154
155

        self.num_layers = config.get("num_layers", 6)
        self.num_single_layers = config.get("num_single_layers", 18)
        self.in_channels = config.get("in_channels", 64)
        self.attention_head_dim = config.get("attention_head_dim", 128)
        self.joint_attention_dim = config.get("joint_attention_dim", 1024)
        self.num_attention_heads = config.get("num_attention_heads", 8)
        self.audio_seq_len = config.get("audio_seq_len", 645)
        self.max_duration = config.get("max_duration", 30)
        self.uncondition = config.get("uncondition", False)
        self.text_encoder_name = config.get("text_encoder_name", "google/flan-t5-large")

hungchiayu1's avatar
hungchiayu1 committed
156
157
158
159
160
161
        self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
        self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
        self.max_text_seq_len = 64
        self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
        self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
        self.text_embedding_dim = self.text_encoder.config.d_model
mrfakename's avatar
mrfakename committed
162
163
164
165
166
167
168
169

        self.fc = nn.Sequential(
            nn.Linear(self.text_embedding_dim, self.joint_attention_dim), nn.ReLU()
        )
        self.duration_emebdder = DurationEmbedder(
            self.text_embedding_dim, min_value=0, max_value=self.max_duration
        )

hungchiayu1's avatar
hungchiayu1 committed
170
        self.transformer = FluxTransformer2DModel(
mrfakename's avatar
mrfakename committed
171
172
173
174
175
176
177
178
179
180
181
182
183
            in_channels=self.in_channels,
            num_layers=self.num_layers,
            num_single_layers=self.num_single_layers,
            attention_head_dim=self.attention_head_dim,
            num_attention_heads=self.num_attention_heads,
            joint_attention_dim=self.joint_attention_dim,
            pooled_projection_dim=self.text_embedding_dim,
            guidance_embeds=False,
        )

        self.beta_dpo = 2000  ## this is used for dpo training

    def get_sigmas(self, timesteps, n_dim=3, dtype=torch.float32):
hungchiayu1's avatar
hungchiayu1 committed
184
185
186
187
188
189
        device = self.text_encoder.device
        sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)

        schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
        timesteps = timesteps.to(device)
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
mrfakename's avatar
mrfakename committed
190

hungchiayu1's avatar
hungchiayu1 committed
191
192
193
194
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma
mrfakename's avatar
mrfakename committed
195

hungchiayu1's avatar
hungchiayu1 committed
196
197
198
    def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
        device = self.text_encoder.device
        batch = self.tokenizer(
mrfakename's avatar
mrfakename committed
199
200
201
202
203
204
205
206
            prompt,
            max_length=self.tokenizer.model_max_length,
            padding=True,
            truncation=True,
            return_tensors="pt",
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(
            device
hungchiayu1's avatar
hungchiayu1 committed
207
208
209
210
211
212
        )

        with torch.no_grad():
            prompt_embeds = self.text_encoder(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]
mrfakename's avatar
mrfakename committed
213

hungchiayu1's avatar
hungchiayu1 committed
214
215
216
217
        prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)

        # get unconditional embeddings for classifier free guidance
mrfakename's avatar
mrfakename committed
218
219
        uncond_tokens = [""]

hungchiayu1's avatar
hungchiayu1 committed
220
221
        max_length = prompt_embeds.shape[1]
        uncond_batch = self.tokenizer(
mrfakename's avatar
mrfakename committed
222
223
224
225
226
            uncond_tokens,
            max_length=max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
hungchiayu1's avatar
hungchiayu1 committed
227
228
229
        )
        uncond_input_ids = uncond_batch.input_ids.to(device)
        uncond_attention_mask = uncond_batch.attention_mask.to(device)
mrfakename's avatar
mrfakename committed
230

hungchiayu1's avatar
hungchiayu1 committed
231
232
233
234
        with torch.no_grad():
            negative_prompt_embeds = self.text_encoder(
                input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
            )[0]
mrfakename's avatar
mrfakename committed
235
236
237
238
239
240
241

        negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(
            num_samples_per_prompt, 0
        )
        uncond_attention_mask = uncond_attention_mask.repeat_interleave(
            num_samples_per_prompt, 0
        )
hungchiayu1's avatar
hungchiayu1 committed
242
243
244

        # For classifier free guidance, we need to do two forward passes.
        # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
mrfakename's avatar
mrfakename committed
245

hungchiayu1's avatar
hungchiayu1 committed
246
247
248
249
250
251
252
253
254
255
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
        boolean_prompt_mask = (prompt_mask == 1).to(device)

        return prompt_embeds, boolean_prompt_mask

    @torch.no_grad()
    def encode_text(self, prompt):
        device = self.text_encoder.device
        batch = self.tokenizer(
mrfakename's avatar
mrfakename committed
256
257
258
259
260
261
262
263
264
            prompt,
            max_length=self.max_text_seq_len,
            padding=True,
            truncation=True,
            return_tensors="pt",
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(
            device
        )
hungchiayu1's avatar
hungchiayu1 committed
265
266

        encoder_hidden_states = self.text_encoder(
mrfakename's avatar
mrfakename committed
267
268
269
            input_ids=input_ids, attention_mask=attention_mask
        )[0]

hungchiayu1's avatar
hungchiayu1 committed
270
        boolean_encoder_mask = (attention_mask == 1).to(device)
mrfakename's avatar
mrfakename committed
271

hungchiayu1's avatar
hungchiayu1 committed
272
273
        return encoder_hidden_states, boolean_encoder_mask

mrfakename's avatar
mrfakename committed
274
275
    def encode_duration(self, duration):
        return self.duration_emebdder(duration)
hungchiayu1's avatar
hungchiayu1 committed
276
277

    @torch.no_grad()
mrfakename's avatar
mrfakename committed
278
279
280
281
282
283
284
285
286
287
288
    def inference_flow(
        self,
        prompt,
        num_inference_steps=50,
        timesteps=None,
        guidance_scale=3,
        duration=10,
        disable_progress=False,
        num_samples_per_prompt=1,
    ):
        """Only tested for single inference. Haven't test for batch inference"""
hungchiayu1's avatar
hungchiayu1 committed
289
290
291
292
293

        bsz = num_samples_per_prompt
        device = self.transformer.device
        scheduler = self.noise_scheduler

mrfakename's avatar
mrfakename committed
294
        if not isinstance(prompt, list):
hungchiayu1's avatar
hungchiayu1 committed
295
            prompt = [prompt]
mrfakename's avatar
mrfakename committed
296
297
        if not isinstance(duration, torch.Tensor):
            duration = torch.tensor([duration], device=device)
hungchiayu1's avatar
hungchiayu1 committed
298
299
300
301
302
        classifier_free_guidance = guidance_scale > 1.0
        duration_hidden_states = self.encode_duration(duration)
        if classifier_free_guidance:
            bsz = 2 * num_samples_per_prompt

mrfakename's avatar
mrfakename committed
303
304
305
306
307
308
            encoder_hidden_states, boolean_encoder_mask = (
                self.encode_text_classifier_free(
                    prompt, num_samples_per_prompt=num_samples_per_prompt
                )
            )
            duration_hidden_states = duration_hidden_states.repeat(bsz, 1, 1)
hungchiayu1's avatar
hungchiayu1 committed
309
310
311

        else:

mrfakename's avatar
mrfakename committed
312
313
314
315
316
317
318
319
320
321
            encoder_hidden_states, boolean_encoder_mask = self.encode_text(
                prompt, num_samples_per_prompt=num_samples_per_prompt
            )

        mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(
            encoder_hidden_states
        )
        masked_data = torch.where(
            mask_expanded, encoder_hidden_states, torch.tensor(float("nan"))
        )
hungchiayu1's avatar
hungchiayu1 committed
322
323
324
325

        pooled = torch.nanmean(masked_data, dim=1)
        pooled_projection = self.fc(pooled)

mrfakename's avatar
mrfakename committed
326
327
328
329
        encoder_hidden_states = torch.cat(
            [encoder_hidden_states, duration_hidden_states], dim=1
        )  ## (bs,seq_len,dim)

hungchiayu1's avatar
hungchiayu1 committed
330
331
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        timesteps, num_inference_steps = retrieve_timesteps(
mrfakename's avatar
mrfakename committed
332
            scheduler, num_inference_steps, device, timesteps, sigmas
hungchiayu1's avatar
hungchiayu1 committed
333
334
        )

mrfakename's avatar
mrfakename committed
335
        latents = torch.randn(num_samples_per_prompt, self.audio_seq_len, 64)
hungchiayu1's avatar
hungchiayu1 committed
336
337
338
339
        weight_dtype = latents.dtype

        progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)

mrfakename's avatar
mrfakename committed
340
341
342
343
344
345
346
347
        txt_ids = torch.zeros(bsz, encoder_hidden_states.shape[1], 3).to(device)
        audio_ids = (
            torch.arange(self.audio_seq_len)
            .unsqueeze(0)
            .unsqueeze(-1)
            .repeat(bsz, 1, 3)
            .to(device)
        )
hungchiayu1's avatar
hungchiayu1 committed
348
349
350
351
352
353
354

        timesteps = timesteps.to(device)
        latents = latents.to(device)
        encoder_hidden_states = encoder_hidden_states.to(device)

        for i, t in enumerate(timesteps):

mrfakename's avatar
mrfakename committed
355
356
357
            latents_input = (
                torch.cat([latents] * 2) if classifier_free_guidance else latents
            )
hungchiayu1's avatar
hungchiayu1 committed
358
359

            noise_pred = self.transformer(
mrfakename's avatar
mrfakename committed
360
361
362
363
364
365
366
367
368
369
370
                hidden_states=latents_input,
                # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
                timestep=torch.tensor([t / 1000], device=device),
                guidance=None,
                pooled_projections=pooled_projection,
                encoder_hidden_states=encoder_hidden_states,
                txt_ids=txt_ids,
                img_ids=audio_ids,
                return_dict=False,
            )[0]

hungchiayu1's avatar
hungchiayu1 committed
371
372
            if classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
mrfakename's avatar
mrfakename committed
373
374
375
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )
hungchiayu1's avatar
hungchiayu1 committed
376

mrfakename's avatar
mrfakename committed
377
            latents = scheduler.step(noise_pred, t, latents).prev_sample
hungchiayu1's avatar
hungchiayu1 committed
378
379
380

        return latents

mrfakename's avatar
mrfakename committed
381
    def forward(self, latents, prompt, duration=torch.tensor([10]), sft=True):
hungchiayu1's avatar
hungchiayu1 committed
382
383
384
385
386
387
388

        device = latents.device
        audio_seq_length = self.audio_seq_len
        bsz = latents.shape[0]

        encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
        duration_hidden_states = self.encode_duration(duration)
mrfakename's avatar
mrfakename committed
389
390
391
392
393
394
395

        mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(
            encoder_hidden_states
        )
        masked_data = torch.where(
            mask_expanded, encoder_hidden_states, torch.tensor(float("nan"))
        )
hungchiayu1's avatar
hungchiayu1 committed
396
397
398
399
        pooled = torch.nanmean(masked_data, dim=1)
        pooled_projection = self.fc(pooled)

        ## Add duration hidden states to encoder hidden states
mrfakename's avatar
mrfakename committed
400
401
402
403
404
405
406
407
408
409
410
411
        encoder_hidden_states = torch.cat(
            [encoder_hidden_states, duration_hidden_states], dim=1
        )  ## (bs,seq_len,dim)

        txt_ids = torch.zeros(bsz, encoder_hidden_states.shape[1], 3).to(device)
        audio_ids = (
            torch.arange(audio_seq_length)
            .unsqueeze(0)
            .unsqueeze(-1)
            .repeat(bsz, 1, 3)
            .to(device)
        )
hungchiayu1's avatar
hungchiayu1 committed
412
413

        if sft:
mrfakename's avatar
mrfakename committed
414

hungchiayu1's avatar
hungchiayu1 committed
415
416
417
418
            if self.uncondition:
                mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
                if len(mask_indices) > 0:
                    encoder_hidden_states[mask_indices] = 0
mrfakename's avatar
mrfakename committed
419

hungchiayu1's avatar
hungchiayu1 committed
420
            noise = torch.randn_like(latents)
mrfakename's avatar
mrfakename committed
421

hungchiayu1's avatar
hungchiayu1 committed
422
            u = compute_density_for_timestep_sampling(
mrfakename's avatar
mrfakename committed
423
424
425
426
427
428
                weighting_scheme="logit_normal",
                batch_size=bsz,
                logit_mean=0,
                logit_std=1,
                mode_scale=None,
            )
hungchiayu1's avatar
hungchiayu1 committed
429
430

            indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
mrfakename's avatar
mrfakename committed
431
432
433
            timesteps = self.noise_scheduler_copy.timesteps[indices].to(
                device=latents.device
            )
hungchiayu1's avatar
hungchiayu1 committed
434
            sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
mrfakename's avatar
mrfakename committed
435

hungchiayu1's avatar
hungchiayu1 committed
436
            noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
mrfakename's avatar
mrfakename committed
437
438
439
440
441
442
443
444

            model_pred = self.transformer(
                hidden_states=noisy_model_input,
                encoder_hidden_states=encoder_hidden_states,
                pooled_projections=pooled_projection,
                img_ids=audio_ids,
                txt_ids=txt_ids,
                guidance=None,
hungchiayu1's avatar
hungchiayu1 committed
445
                # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
mrfakename's avatar
mrfakename committed
446
447
448
                timestep=timesteps / 1000,
                return_dict=False,
            )[0]
hungchiayu1's avatar
hungchiayu1 committed
449
450
451

            target = noise - latents
            loss = torch.mean(
mrfakename's avatar
mrfakename committed
452
453
454
455
456
                ((model_pred.float() - target.float()) ** 2).reshape(
                    target.shape[0], -1
                ),
                1,
            )
hungchiayu1's avatar
hungchiayu1 committed
457
            loss = loss.mean()
mrfakename's avatar
mrfakename committed
458
459
460
461
462
            raw_model_loss, raw_ref_loss, implicit_acc = (
                0,
                0,
                0,
            )  ## default this to 0 if doing sft
hungchiayu1's avatar
hungchiayu1 committed
463
464
465

        else:
            encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
mrfakename's avatar
mrfakename committed
466
467
468
469
            pooled_projection = pooled_projection.repeat(2, 1)
            noise = (
                torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1)
            )  ## Have to sample same noise for preferred and rejected
hungchiayu1's avatar
hungchiayu1 committed
470
            u = compute_density_for_timestep_sampling(
mrfakename's avatar
mrfakename committed
471
472
473
474
475
476
                weighting_scheme="logit_normal",
                batch_size=bsz // 2,
                logit_mean=0,
                logit_std=1,
                mode_scale=None,
            )
hungchiayu1's avatar
hungchiayu1 committed
477
478

            indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
mrfakename's avatar
mrfakename committed
479
480
481
            timesteps = self.noise_scheduler_copy.timesteps[indices].to(
                device=latents.device
            )
hungchiayu1's avatar
hungchiayu1 committed
482
483
            timesteps = timesteps.repeat(2)
            sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
mrfakename's avatar
mrfakename committed
484

hungchiayu1's avatar
hungchiayu1 committed
485
486
            noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise

mrfakename's avatar
mrfakename committed
487
488
489
490
491
492
493
            model_pred = self.transformer(
                hidden_states=noisy_model_input,
                encoder_hidden_states=encoder_hidden_states,
                pooled_projections=pooled_projection,
                img_ids=audio_ids,
                txt_ids=txt_ids,
                guidance=None,
hungchiayu1's avatar
hungchiayu1 committed
494
                # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
mrfakename's avatar
mrfakename committed
495
496
497
                timestep=timesteps / 1000,
                return_dict=False,
            )[0]
hungchiayu1's avatar
hungchiayu1 committed
498
            target = noise - latents
mrfakename's avatar
mrfakename committed
499
500
501
502
503
504
505

            model_losses = F.mse_loss(
                model_pred.float(), target.float(), reduction="none"
            )
            model_losses = model_losses.mean(
                dim=list(range(1, len(model_losses.shape)))
            )
hungchiayu1's avatar
hungchiayu1 committed
506
            model_losses_w, model_losses_l = model_losses.chunk(2)
mrfakename's avatar
mrfakename committed
507
            model_diff = model_losses_w - model_losses_l
hungchiayu1's avatar
hungchiayu1 committed
508
509
510
511
            raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean())

            with torch.no_grad():
                ref_preds = self.ref_transformer(
mrfakename's avatar
mrfakename committed
512
513
514
515
516
517
518
519
520
521
522
523
524
                    hidden_states=noisy_model_input,
                    encoder_hidden_states=encoder_hidden_states,
                    pooled_projections=pooled_projection,
                    img_ids=audio_ids,
                    txt_ids=txt_ids,
                    guidance=None,
                    timestep=timesteps / 1000,
                    return_dict=False,
                )[0]

                ref_loss = F.mse_loss(
                    ref_preds.float(), target.float(), reduction="none"
                )
hungchiayu1's avatar
hungchiayu1 committed
525
                ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape))))
mrfakename's avatar
mrfakename committed
526

hungchiayu1's avatar
hungchiayu1 committed
527
528
529
530
531
                ref_losses_w, ref_losses_l = ref_loss.chunk(2)
                ref_diff = ref_losses_w - ref_losses_l
                raw_ref_loss = ref_loss.mean()

            scale_term = -0.5 * self.beta_dpo
mrfakename's avatar
mrfakename committed
532
533
534
535
536
            inside_term = scale_term * (model_diff - ref_diff)
            implicit_acc = (
                scale_term * (model_diff - ref_diff) > 0
            ).sum().float() / inside_term.size(0)
            loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean()
hungchiayu1's avatar
hungchiayu1 committed
537

mrfakename's avatar
mrfakename committed
538
539
        ## raw_model_loss, raw_ref_loss, implicit_acc is used to help to analyze dpo behaviour.
        return loss, raw_model_loss, raw_ref_loss, implicit_acc