"vscode:/vscode.git/clone" did not exist on "62a1b87bac64ca51b9ba87865e909ff12c475031"
tangoflux.py 1.84 KB
Newer Older
hungchiayu1's avatar
hungchiayu1 committed
1
2
3
4
5
6
7
8
9
10
11
from diffusers import AutoencoderOobleck
import torch
from transformers  import T5EncoderModel,T5TokenizerFast
from diffusers import   FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
hungchiayu1's avatar
updates  
hungchiayu1 committed
12
from src.model import TangoFlux
hungchiayu1's avatar
hungchiayu1 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from huggingface_hub import snapshot_download
from tqdm import tqdm
from typing import Optional,Union,List
from datasets import load_dataset, Audio
from math import pi
import json
import inspect
import yaml
from safetensors.torch import load_file


class TangoFluxInference:

    def __init__(self,name='declare-lab/TangoFlux',device="cuda"):
        

        self.vae = AutoencoderOobleck.from_pretrained("stabilityai/stable-audio-open-1.0",subfolder='vae')

        paths = snapshot_download(repo_id=name) 
        weights = load_file("{}/tangoflux.safetensors".format(paths))

        with open('{}/config.json'.format(paths),'r') as f:
            config = json.load(f)
        self.model = TangoFlux(config)
        self.model.load_state_dict(weights,strict=False)
        # _IncompatibleKeys(missing_keys=['text_encoder.encoder.embed_tokens.weight'], unexpected_keys=[]) this behaviour is expected 
        self.vae.to(device)
        self.model.to(device)
    
    def generate(self,prompt,steps=25,duration=10,guidance_scale=4.5):
        
        with torch.no_grad():
            latents = self.model.inference_flow(prompt,
            duration=duration,
            num_inference_steps=steps,
            guidance_scale=guidance_scale)



            wave = self.vae.decode(latents.transpose(2,1)).sample.cpu()[0]
hungchiayu1's avatar
updates  
hungchiayu1 committed
53
54
        waveform_end = int(duration * self.vae.config.sampling_rate)
        wave =  wave[:, :, :waveform_end]
hungchiayu1's avatar
hungchiayu1 committed
55
56
57
58
59
        return wave