Commit 696d90c4 authored by muyangli's avatar muyangli
Browse files

[minor] add the qrcode and update README

parent 3fb54988
...@@ -2,10 +2,11 @@ ...@@ -2,10 +2,11 @@
Nunchaku is an inference engine designed for 4-bit diffusion models, as demonstrated in our paper [SVDQuant](http://arxiv.org/abs/2411.05007). Please check [DeepCompressor](https://github.com/mit-han-lab/deepcompressor) for the quantization library. Nunchaku is an inference engine designed for 4-bit diffusion models, as demonstrated in our paper [SVDQuant](http://arxiv.org/abs/2411.05007). Please check [DeepCompressor](https://github.com/mit-han-lab/deepcompressor) for the quantization library.
Chere [here](https://github.com/mit-han-lab/nunchaku/issues/149) to join our user groups on Slack and WeChat for discussions! If you have any questions, encounter issues, or are interested in contributing to the codebase, feel free to share your thoughts there! Check [here](https://github.com/mit-han-lab/nunchaku/issues/149) to join our user groups on [**Slack**](https://join.slack.com/t/nunchaku/shared_invite/zt-3170agzoz-NgZzWaTrEj~n2KEV3Hpl5Q) and [**WeChat**](./assets/wechat.jpg) for discussions! If you have any questions, encounter issues, or are interested in contributing to the codebase, feel free to share your thoughts there!
### [Paper](http://arxiv.org/abs/2411.05007) | [Project](https://hanlab.mit.edu/projects/svdquant) | [Blog](https://hanlab.mit.edu/blog/svdquant) | [Demo](https://svdquant.mit.edu) ### [Paper](http://arxiv.org/abs/2411.05007) | [Project](https://hanlab.mit.edu/projects/svdquant) | [Blog](https://hanlab.mit.edu/blog/svdquant) | [Demo](https://svdquant.mit.edu) | [HuggingFace](https://huggingface.co/collections/mit-han-lab/svdquant-67493c2c2e62a1fc6e93f45c) | [ModelScope](https://modelscope.cn/collections/svdquant-468e8f780c2641)
- **[2025-03-11]** **🚀 Release [4-bit Shuttle-Jaguar](https://huggingface.co/mit-han-lab/svdq-int4-shuttle-jaguar)!** Check the INT4 models in our [HuggingFace](https://huggingface.co/collections/mit-han-lab/svdquant-67493c2c2e62a1fc6e93f45c) or [ModelScope](https://modelscope.cn/collections/svdquant-468e8f780c2641) collections! FP4 models are coming soon!
- **[2025-03-07]** 🚀 **Nunchaku v0.1.4 Released!** We've supported [4-bit text encoder and per-layer CPU offloading](#Low-Memory-Inference), reducing FLUX's minimum memory requirement to just **4 GiB** while maintaining a **2–3× speedup**. This update also fixes various issues related to resolution, LoRA, pin memory, and runtime stability. Check out the release notes for full details! - **[2025-03-07]** 🚀 **Nunchaku v0.1.4 Released!** We've supported [4-bit text encoder and per-layer CPU offloading](#Low-Memory-Inference), reducing FLUX's minimum memory requirement to just **4 GiB** while maintaining a **2–3× speedup**. This update also fixes various issues related to resolution, LoRA, pin memory, and runtime stability. Check out the release notes for full details!
- **[2025-02-20]** 🚀 We release the [pre-built wheels](https://huggingface.co/mit-han-lab/nunchaku) to simplify installation! Check [here](#Installation) for the guidance! - **[2025-02-20]** 🚀 We release the [pre-built wheels](https://huggingface.co/mit-han-lab/nunchaku) to simplify installation! Check [here](#Installation) for the guidance!
- **[2025-02-20]** 🚀 **Support NVFP4 precision on NVIDIA RTX 5090!** NVFP4 delivers superior image quality compared to INT4, offering **~3× speedup** on the RTX 5090 over BF16. Learn more in our [blog](https://hanlab.mit.edu/blog/svdquant-nvfp4), checkout [`examples`](./examples) for usage and try [our demo](https://svdquant.mit.edu/flux1-schnell/) online! - **[2025-02-20]** 🚀 **Support NVFP4 precision on NVIDIA RTX 5090!** NVFP4 delivers superior image quality compared to INT4, offering **~3× speedup** on the RTX 5090 over BF16. Learn more in our [blog](https://hanlab.mit.edu/blog/svdquant-nvfp4), checkout [`examples`](./examples) for usage and try [our demo](https://svdquant.mit.edu/flux1-schnell/) online!
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment