flux.py 6.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import os

import comfy.model_patcher
import folder_paths
import GPUtil
import torch
from comfy.ldm.common_dit import pad_to_patch_size
from comfy.supported_models import Flux, FluxSchnell
from diffusers import FluxTransformer2DModel
from einops import rearrange, repeat
from torch import nn

muyangli's avatar
muyangli committed
13
from nunchaku import NunchakuFluxTransformer2dModel
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class ComfyUIFluxForwardWrapper(nn.Module):
    def __init__(self, model: NunchakuFluxTransformer2dModel, config):
        super(ComfyUIFluxForwardWrapper, self).__init__()
        self.model = model
        self.dtype = next(model.parameters()).dtype
        self.config = config

    def forward(
        self,
        x,
        timestep,
        context,
        y,
        guidance,
        control=None,
        transformer_options={},
        **kwargs,
    ):
        assert control is None  # for now
        bs, c, h, w = x.shape
        patch_size = self.config["patch_size"]
        x = pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = (h + (patch_size // 2)) // patch_size
        w_len = (w + (patch_size // 2)) // patch_size
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(
            0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype
        ).unsqueeze(1)
        img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(
            0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype
        ).unsqueeze(0)
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        out = self.model(
            hidden_states=img,
            encoder_hidden_states=context,
            pooled_projections=y,
            timestep=timestep,
            img_ids=img_ids,
            txt_ids=txt_ids,
            guidance=guidance if self.config["guidance_embed"] else None,
        ).sample

        out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
        return out


class SVDQuantFluxDiTLoader:
    @classmethod
    def INPUT_TYPES(s):
        model_paths = [
            "mit-han-lab/svdq-int4-flux.1-schnell",
            "mit-han-lab/svdq-int4-flux.1-dev",
muyangli's avatar
muyangli committed
73
74
            "mit-han-lab/svdq-fp4-flux.1-schnell",
            "mit-han-lab/svdq-fp4-flux.1-dev",
75
76
77
78
            "mit-han-lab/svdq-int4-flux.1-canny-dev",
            "mit-han-lab/svdq-int4-flux.1-depth-dev",
            "mit-han-lab/svdq-int4-flux.1-fill-dev",
        ]
muyangli's avatar
muyangli committed
79
80
81
82
83
84
85
86
87
88
89
90
        prefixes = folder_paths.folder_names_and_paths["diffusion_models"][0]
        local_folders = set()
        for prefix in prefixes:
            if os.path.exists(prefix) and os.path.isdir(prefix):
                local_folders_ = os.listdir(prefix)
                local_folders_ = [
                    folder
                    for folder in local_folders_
                    if not folder.startswith(".") and os.path.isdir(os.path.join(prefix, folder))
                ]
                local_folders.update(local_folders_)
        local_folders = sorted(list(local_folders))
91
92
93
94
        model_paths = local_folders + model_paths
        ngpus = len(GPUtil.getGPUs())
        return {
            "required": {
muyangli's avatar
muyangli committed
95
96
97
98
99
100
101
102
103
104
105
                "model_path": (
                    model_paths,
                    {"tooltip": "The SVDQuant quantized FLUX.1 models. It can be a huggingface path or a local path."},
                ),
                "cpu_offload": (
                    ["enable", "disable"],
                    {
                        "default": "disable",
                        "tooltip": "Whether to enable CPU offload for the transformer model. This may slow down the inference, but may reduce the GPU memory usage.",
                    },
                ),
106
107
                "device_id": (
                    "INT",
muyangli's avatar
muyangli committed
108
109
110
111
112
113
114
115
116
                    {
                        "default": 0,
                        "min": 0,
                        "max": ngpus,
                        "step": 1,
                        "display": "number",
                        "lazy": True,
                        "tooltip": "The GPU device ID to use for the model.",
                    },
117
118
119
120
121
122
123
124
125
                ),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_model"
    CATEGORY = "SVDQuant"
    TITLE = "SVDQuant Flux DiT Loader"

muyangli's avatar
muyangli committed
126
    def load_model(self, model_path: str, cpu_offload: str, device_id: int, **kwargs) -> tuple[FluxTransformer2DModel]:
127
        device = f"cuda:{device_id}"
muyangli's avatar
muyangli committed
128
129
130
131
132
133
134
        prefixes = folder_paths.folder_names_and_paths["diffusion_models"][0]
        for prefix in prefixes:
            if os.path.exists(os.path.join(prefix, model_path)):
                model_path = os.path.join(prefix, model_path)
                break
        transformer = NunchakuFluxTransformer2dModel.from_pretrained(model_path, offload=cpu_offload == "enable")
        transformer = transformer.to(device)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        dit_config = {
            "image_model": "flux",
            "patch_size": 2,
            "out_channels": 16,
            "vec_in_dim": 768,
            "context_in_dim": 4096,
            "hidden_size": 3072,
            "mlp_ratio": 4.0,
            "num_heads": 24,
            "depth": 19,
            "depth_single_blocks": 38,
            "axes_dim": [16, 56, 56],
            "theta": 10000,
            "qkv_bias": True,
            "guidance_embed": True,
            "disable_unet_model_creation": True,
        }

        if "schnell" in model_path:
            dit_config["guidance_embed"] = False
            dit_config["in_channels"] = 16
            model_config = FluxSchnell(dit_config)
        elif "canny" in model_path or "depth" in model_path:
            dit_config["in_channels"] = 32
            model_config = Flux(dit_config)
        elif "fill" in model_path:
            dit_config["in_channels"] = 64
            model_config = Flux(dit_config)
        else:
            dit_config["in_channels"] = 16
            model_config = Flux(dit_config)

        model_config.set_inference_dtype(torch.bfloat16, None)
        model_config.custom_operations = None

        model = model_config.get_model({})
        model.diffusion_model = ComfyUIFluxForwardWrapper(transformer, config=dit_config)
        model = comfy.model_patcher.ModelPatcher(model, device, device_id)
        return (model,)