evaluate.py 2.77 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import argparse
import os

import torch
from tqdm import tqdm

from data import get_dataset
from utils import get_pipeline, hash_str_to_int


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", type=str, default="schnell", choices=["schnell", "dev"], help="Which FLUX.1 model to use"
    )
    parser.add_argument(
17
        "-p", "--precision", type=str, default="int4", choices=["int4", "fp4", "bf16"], help="Which precision to use"
Zhekai Zhang's avatar
Zhekai Zhang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    )
    parser.add_argument(
        "-d", "--datasets", type=str, nargs="*", default=["MJHQ", "DCI"], help="The benchmark datasets to evaluate on."
    )
    parser.add_argument("-t", "--num-inference-steps", type=int, default=4, help="Number of inference steps")
    parser.add_argument("-g", "--guidance-scale", type=float, default=0, help="Guidance scale.")
    parser.add_argument("-o", "--output-root", type=str, default=None, help="Image output path")
    parser.add_argument(
        "--chunk-step",
        type=int,
        default=1,
        help="You will generate images for the subset specified by [chunk-start::chunk-step].",
    )
    parser.add_argument(
        "--chunk-start",
        type=int,
        default=0,
        help="You will generate images for the subset specified by [chunk-start::chunk-step].",
    )
    known_args, _ = parser.parse_known_args()

    if known_args.model == "dev":
        parser.set_defaults(num_inference_steps=50, guidance_scale=3.5)
    args = parser.parse_args()
    return args


def main():
    args = get_args()
    assert args.chunk_step > 0
    assert 0 <= args.chunk_start < args.chunk_step

    pipeline = get_pipeline(model_name=args.model, precision=args.precision, device="cuda")
    pipeline.set_progress_bar_config(desc="Sampling", leave=False, dynamic_ncols=True, position=1)

    output_root = args.output_root
    if output_root is None:
        output_root = f"results/{args.model}/{args.precision}/"

    for dataset_name in args.datasets:
        output_dirname = os.path.join(output_root, dataset_name)
        os.makedirs(output_dirname, exist_ok=True)
muyangli's avatar
muyangli committed
60
        dataset = get_dataset(name=dataset_name, max_dataset_size=8)
Zhekai Zhang's avatar
Zhekai Zhang committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        if args.chunk_step > 1:
            dataset = dataset.select(range(args.chunk_start, len(dataset), args.chunk_step))
        for row in tqdm(dataset):
            filename = row["filename"]
            prompt = row["prompt"]
            seed = hash_str_to_int(filename)
            image = pipeline(
                prompt,
                num_inference_steps=args.num_inference_steps,
                guidance_scale=args.guidance_scale,
                generator=torch.Generator().manual_seed(seed),
            ).images[0]
            image.save(os.path.join(output_dirname, f"{filename}.png"))


if __name__ == "__main__":
    main()