misc_kernels_impl.cuh 7.54 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
#include "reduction_utils.cuh"
#include <array>

4
5
6
#include <cuda_fp16.h>
#include <cuda_bf16.h>

Zhekai Zhang's avatar
Zhekai Zhang committed
7
8
9
#include "utils.cuh"
#include "activation_kernels_impl.cuh"

muyangli's avatar
muyangli committed
10
11
namespace nunchaku::kernels {

Zhekai Zhang's avatar
Zhekai Zhang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25

template<typename T>
__global__ void add_kernel(T *a, T *b, T *c, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i < length) {
        c[i] = a[i] + b[i];
    }
}

template<typename T, int unroll>
struct alignas(sizeof(T) * unroll) Tvec {
    T data[unroll];
};

muyangli's avatar
muyangli committed
26
27
28
template<typename T, int unroll, bool no_scale>
__global__ void mul_add_kernel(T *x, T *scale, T *bias, T scale_shift, size_t length, int mod_scale, int mod_bias, int64_t batch_stride_x, int64_t batch_stride_scale, int64_t batch_stride_bias) {
    const int batch_id = blockIdx.y;
Zhekai Zhang's avatar
Zhekai Zhang committed
29
30
31
32
33
34
35
36
37
    int thread = threadIdx.x + blockIdx.x * blockDim.x;
    int i = thread * unroll;
    int i_scale = i % mod_scale;
    int i_bias = i % mod_bias;

    if (i >= length) {
        return;
    }

muyangli's avatar
muyangli committed
38
    using Tvec = nunchaku::kernels::Tvec<T, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
39

muyangli's avatar
muyangli committed
40
41
42
    Tvec rx = *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]);
    Tvec rscale = *reinterpret_cast<Tvec *>(&scale[i_scale + batch_stride_scale * batch_id]);
    Tvec rbias = *reinterpret_cast<Tvec *>(&bias[i_bias + batch_stride_bias * batch_id]);
Zhekai Zhang's avatar
Zhekai Zhang committed
43
44
45

#pragma unroll
    for (int k = 0; k < unroll; k++) {
muyangli's avatar
muyangli committed
46
47
48
49
50
51
        T tmp;
        if constexpr (no_scale) {
            tmp = rx.data[k] + rbias.data[k];
        } else {
            tmp = rx.data[k] * (rscale.data[k] + scale_shift) + rbias.data[k];
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
52
53
54
55
56
57
58
        if constexpr (std::is_same_v<T, half>) {
            tmp = __hmin(tmp, (half)65504);
            tmp = __hmax(tmp, (half)-65504);
        }
        rx.data[k] = tmp;
    }

muyangli's avatar
muyangli committed
59
    *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]) = rx;
Zhekai Zhang's avatar
Zhekai Zhang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

// #pragma unroll
//     for (int k = 0; k < unroll; k++) {
//         // assert(i < length);
//         x[i] = x[i] * scale[i_scale] + bias[i_bias];
//         i++;
//         i_scale++;
//         i_bias++;
//         // assert(i_scale < mod_scale);
//         // assert(i_bias < mod_bias);
//     }
}

template<typename T, size_t N>
__global__ void split_mod_kernel(T *input, std::array<T *, N> output, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i * N < length) {
#pragma unroll
        for (int k = 0; k < N; k++) {
            output[k][i] = input[i * N + k];
        }
    }
}

template<typename T>
__global__ void EmbeddingKernel(int32_t *__restrict__ input_id, T *__restrict__ output, T *__restrict__ lookup, int embed_dim) {
    int i = blockIdx.x;

    int32_t token_id = input_id[i];
    T *output_sample_ptr = output + i * embed_dim;
    T *target_embed = lookup + token_id * embed_dim;

    for (int j = threadIdx.x; j < embed_dim; j += blockDim.x) {
        output_sample_ptr[j] = target_embed[j];
    }
}

template<typename T>
__global__ void argmax_sample_kernel(T *input, int32_t *output, int hidden_dim) {
    float maxValue = -1e20;
    int argmax = 0;
    for (int i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
        float data = (float)input[blockIdx.x * hidden_dim + i];
        if (data > maxValue) {
            maxValue = data;
            argmax   = i;
        }
    }
    // blockAllReduceMax seems to be broken when T=half 
    float maxValueBlock = vllm::blockAllReduceMax(maxValue);
    if (maxValue == maxValueBlock) {
        output[blockIdx.x] = argmax;
    }
}

template<typename T>
__global__ void splitqkv_kernel(T *qkv, T *q, T *k, T *v, int q_size, int kv_size) {
    int qkv_size = q_size + 2 * kv_size;
    for (int i = threadIdx.x; i < qkv_size; i += blockDim.x) {
        T data = qkv[blockIdx.x * qkv_size + i];
        if (i < q_size) {
            q[blockIdx.x * q_size + i] = data;
        } else if (i < q_size + kv_size) {
            k[blockIdx.x * kv_size + i - q_size] = data;
        } else {
            v[blockIdx.x * kv_size + i - q_size - kv_size] = data;
        }
    }
}

template <typename T, int unroll>
__global__ void quant_kernel_static(const T * input, int8_t * output, T scale, size_t length) {
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

muyangli's avatar
muyangli committed
137
138
    using Tvec = nunchaku::kernels::Tvec<T, unroll>;
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)rinput.data[k]) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

template <typename T, int unroll>
__global__ void quant_kernel_static_fuse_gelu(const T * input, int8_t * output, T scale, size_t length) {
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

muyangli's avatar
muyangli committed
159
160
    using Tvec = nunchaku::kernels::Tvec<T, unroll>;
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
161
162
163
164
165
166
167
168
169
170
171
172
173

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)vllm::gelu_new_kernel(rinput.data[k])) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

174
175
176
177
template<typename Tin, typename Tout, int unroll>
__global__ void cast_kernel(const Tin *input, Tout *output, size_t length) {
    const int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;

muyangli's avatar
muyangli committed
178
179
    using Tvec_in = nunchaku::kernels::Tvec<Tin, unroll>;
    using Tvec_out = nunchaku::kernels::Tvec<Tout, unroll>;
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    Tvec_in  rinput = *reinterpret_cast<const Tvec_in *>(&input[i]);
    Tvec_out routput;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = cuda_cast<Tout, Tin>(rinput.data[k]);
        if constexpr (std::is_same_v<Tout, half>) {
            routput.data[k] = __hmin(routput.data[k], (half)65504);
            routput.data[k] = __hmax(routput.data[k], (half)-65504);
        }
    }

    *reinterpret_cast<Tvec_out *>(&output[i]) = routput;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

// input:  [..., N]
// output: [..., K] of index in reverse order
template<typename T, int K>
__global__
void topk_kernel(const T *input, int *output, int N, int strideInput, int numRows) {
    const int row = blockIdx.x * blockDim.x + threadIdx.x;
    const int offset = row * strideInput;

    if (row >= numRows) {
        return;
    }

    T   val[K];
    int16_t idx[K];

#pragma unroll
    for (int i = 0; i < K; i++) {
        val[i] = input[offset + i];
        idx[i] = i;
    }

    // if (blockIdx.x == 0 && threadIdx.x == 0) {
    //     for (int i = 0; i < K; i++) {
    //         printf("%d ", idx[i]);
    //     }
    //     printf("\n");
    // }

    for (int i = K; i < N; i++) {
        T newval = input[offset + i];

        T minval = val[0];
        int minpos = 0;
#pragma unroll
        for (int j = 1; j < K; j++) {
            if (val[j] < minval) {
                minval = val[j];
                minpos = j;
            }
        }

        if (newval >= minval) {
#pragma unroll
            for (int j = 0; j < K; j++) {
                if (j >= minpos) {
                    val[j] = val[j + 1];
                    idx[j] = idx[j + 1];
                }
            }
            val[K - 1] = newval;
            idx[K - 1] = i;
        }

        // if (blockIdx.x == 0 && threadIdx.x == 0) {
        //     for (int i = 0; i < K; i++) {
        //         printf("%d ", idx[i]);
        //     }
        //     printf("\n");
        // }
    }

    for (int i = 0; i < K; i++) {
        output[row * K + i] = idx[K - i - 1];
    }
muyangli's avatar
muyangli committed
260
261
262
}

};  // namespace nunchaku::kernels