Serialization.cpp 5.39 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
#include "Serialization.h"

#include <nlohmann/json.hpp>
#include <mio/mmap.hpp>


using json = nlohmann::json;
using spdlog::fmt_lib::format;

10
class SafeTensors::MMapImpl {
Zhekai Zhang's avatar
Zhekai Zhang committed
11
public:
12
13
14
    virtual ~MMapImpl() {}
    virtual size_t size() = 0;
    virtual const char *data() = 0;
Zhekai Zhang's avatar
Zhekai Zhang committed
15
16
};

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class SafeTensors::MMapImplMio : public SafeTensors::MMapImpl {
public:
    MMapImplMio(const std::string &filename) : impl(filename, 0, mio::map_entire_file) {}
    virtual size_t size() override {
        return impl.size();
    }
    virtual const char *data() override {
        return impl.data();
    }

private:
    mio::mmap_source impl;
};

#ifdef __linux__ 

#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

class SafeTensors::MMapImplPrivate : public SafeTensors::MMapImpl {
public:
    MMapImplPrivate(const std::string &filename) {
        int fd = open(filename.c_str(), O_RDONLY);
        if (fd < 0) {
            throw std::system_error(errno, std::generic_category(), filename);
        }

        struct stat statbuf;
        fstat(fd, &statbuf);
        filesize = statbuf.st_size;

        ptr = mmap(0, filesize, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
        if (ptr == MAP_FAILED) {
            close(fd);
            throw std::system_error(errno, std::generic_category(), filename);
        }

        close(fd);
    }
    ~MMapImplPrivate() {
        munmap(ptr, filesize);
    }

    virtual size_t size() override {
        return filesize;
    }
    virtual const char *data() override {
        return (const char *)ptr;
    }

private:
    size_t filesize;
    void *ptr;
};

#else 

class SafeTensors::MMapImplPrivate : public SafeTensors::MMapImpl {
public:
    MMapImplPrivate(const std::string &filename) {
sxtyzhangzk's avatar
sxtyzhangzk committed
78
        throw std::runtime_error("MAP_PRIVATE is not implemented on this system");
Zhekai Zhang's avatar
Zhekai Zhang committed
79
    }
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    virtual size_t size() override {
        return 0;
    }
    virtual const char *data() override {
        return nullptr;
    }
};

#endif

SafeTensors::SafeTensors(const std::string &filename) {
    this->mapped = std::make_unique<MMapImplMio>(filename);

Zhekai Zhang's avatar
Zhekai Zhang committed
94
95
96
    if (cudaHostRegister(const_cast<char *>(this->mapped->data()), this->mapped->size(), cudaHostRegisterPortable | cudaHostRegisterReadOnly) != cudaSuccess) {
        spdlog::warn("Unable to pin memory: {}", cudaGetErrorString(cudaGetLastError()));
        // mlock(const_cast<char *>(this->mapped->data()), this->mapped->size());
97
98
99
100
101
102
#ifdef __linux__
        spdlog::info("Try MAP_PRIVATE");
        this->mapped.reset();
        this->mapped = std::make_unique<MMapImplPrivate>(filename);
        checkCUDA(cudaHostRegister(const_cast<char *>(this->mapped->data()), this->mapped->size(), cudaHostRegisterPortable));
#endif
Zhekai Zhang's avatar
Zhekai Zhang committed
103
    }
104

Zhekai Zhang's avatar
Zhekai Zhang committed
105
106
107
108
    parseHeader();
}

SafeTensors::~SafeTensors() {
PengXin's avatar
PengXin committed
109
#ifndef _WIN32  
Zhekai Zhang's avatar
Zhekai Zhang committed
110
    checkCUDA(cudaHostUnregister(const_cast<char *>(this->mapped->data())));
PengXin's avatar
PengXin committed
111
#endif
Zhekai Zhang's avatar
Zhekai Zhang committed
112
113
114
115
116
117
118
119
120
121
}

void SafeTensors::parseHeader() {
    static const std::unordered_map<std::string, Tensor::ScalarType> mapDType = {
        { "BF16", Tensor::BF16  },
        { "F16",  Tensor::FP16  },
        { "F32",  Tensor::FP32  },
        { "I8",   Tensor::INT8  },
        { "I32",  Tensor::INT32 },
        { "I64",  Tensor::INT64 },
122
123
        { "F8_E4M3", Tensor::FP8_E4M3 },
        { "F8_E5M2", Tensor::FP8_E5M2 },
Zhekai Zhang's avatar
Zhekai Zhang committed
124
125
126
127
128
129
130
131
132
133
134
135
    };

    auto check = [](bool cond, std::source_location location = std::source_location::current()) {
        if (!cond) {
            throw std::runtime_error(format("Safetensors check failed at {}:{}", location.file_name(), location.line()));
        }
    };

    check(this->mapped->size() > 8);
    uint64_t sizeHeader = *reinterpret_cast<const uint64_t *>(this->mapped->data());

    check(this->mapped->size() - 8 >= sizeHeader);
136
    json header = json::parse(this->mapped->data() + 8, this->mapped->data() + 8 + sizeHeader);
Zhekai Zhang's avatar
Zhekai Zhang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    const uint64_t offsetMax = this->mapped->size() - sizeHeader - 8;
    std::set<size_t> offsets;

    for (auto &&[key, info] : header.items()) {
        if (key == "__metadata__") {
            continue;
        }

        auto dtype = mapDType.at(info["dtype"].get<std::string>());;
        auto shape = info["shape"].get<std::vector<int>>();
        auto data_offsets = info["data_offsets"].get<std::vector<uint64_t>>();

        check(data_offsets.size() == 2);
        check(data_offsets[0] <= data_offsets[1]);
        check(data_offsets[0] < offsetMax);
        check(data_offsets[1] <= offsetMax);
        for (auto &&dim : shape) {
            check(dim >= 0);
        }

        TensorInfo tinfo;
        tinfo.type = dtype;
        tinfo.shape = TensorShape(shape);
        tinfo.length = data_offsets[1] - data_offsets[0];
        tinfo.offset = 8 + sizeHeader + data_offsets[0];

        // TODO: check range overlap
        check(!offsets.contains(tinfo.offset));
        offsets.insert(tinfo.offset);

        check(tinfo.shape.size() * Tensor::scalarSize.at(tinfo.type) <= tinfo.length);

        tensors[key] = tinfo;
    }
}

Tensor SafeTensors::getTensor(const std::string &key) {
    if (!tensors.contains(key)) {
        return Tensor{};
    }
    TensorInfo &info = tensors.at(key);

    std::shared_ptr<BufferMMap> buffer = info.buffer.lock();
    if (!buffer) {
        buffer = std::make_shared<BufferMMap>(const_cast<char *>(this->mapped->data() + info.offset), info.length, shared_from_this());
        info.buffer = buffer;
    }

    Tensor result;
    result.shape = info.shape;
    result.scalarType = info.type;
    result.buffer = buffer;

    return result;
}