utils.py 12.8 KB
Newer Older
muyangli's avatar
muyangli committed
1
import gc
muyangli's avatar
update  
muyangli committed
2
import math
muyangli's avatar
muyangli committed
3
4
5
import os

import torch
6
7
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline, FluxFillPipeline, FluxPipeline, FluxPriorReduxPipeline
muyangli's avatar
muyangli committed
8
from diffusers.hooks import apply_group_offloading
9
10
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
muyangli's avatar
muyangli committed
11
12
from tqdm import tqdm

13
14
15
import nunchaku
from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.lora.flux.compose import compose_lora
muyangli's avatar
muyangli committed
16
from ..data import get_dataset
17
from ..utils import already_generate, compute_lpips, hash_str_to_int
muyangli's avatar
muyangli committed
18

19
20
21
22
23
24
25
26
ORIGINAL_REPO_MAP = {
    "flux.1-schnell": "black-forest-labs/FLUX.1-schnell",
    "flux.1-dev": "black-forest-labs/FLUX.1-dev",
    "shuttle-jaguar": "shuttleai/shuttle-jaguar",
    "flux.1-canny-dev": "black-forest-labs/FLUX.1-Canny-dev",
    "flux.1-depth-dev": "black-forest-labs/FLUX.1-Depth-dev",
    "flux.1-fill-dev": "black-forest-labs/FLUX.1-Fill-dev",
}
muyangli's avatar
muyangli committed
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
NUNCHAKU_REPO_PATTERN_MAP = {
    "flux.1-schnell": "mit-han-lab/svdq-{precision}-flux.1-schnell",
    "flux.1-dev": "mit-han-lab/svdq-{precision}-flux.1-dev",
    "shuttle-jaguar": "mit-han-lab/svdq-{precision}-shuttle-jaguar",
    "flux.1-canny-dev": "mit-han-lab/svdq-{precision}-flux.1-canny-dev",
    "flux.1-depth-dev": "mit-han-lab/svdq-{precision}-flux.1-depth-dev",
    "flux.1-fill-dev": "mit-han-lab/svdq-{precision}-flux.1-fill-dev",
}

LORA_PATH_MAP = {
    "hypersd8": "ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors",
    "turbo8": "alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors",
    "realism": "XLabs-AI/flux-RealismLora/lora.safetensors",
    "ghibsky": "aleksa-codes/flux-ghibsky-illustration/lora.safetensors",
    "anime": "alvdansen/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors",
    "sketch": "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch/FLUX-dev-lora-children-simple-sketch.safetensors",
    "yarn": "linoyts/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors",
    "haunted_linework": "alvdansen/haunted_linework_flux/hauntedlinework_flux_araminta_k.safetensors",
    "canny": "black-forest-labs/FLUX.1-Canny-dev-lora/flux1-canny-dev-lora.safetensors",
    "depth": "black-forest-labs/FLUX.1-Depth-dev-lora/flux1-depth-dev-lora.safetensors",
}


muyangli's avatar
muyangli committed
51
def run_pipeline(dataset, batch_size: int, task: str, pipeline: FluxPipeline, save_dir: str, forward_kwargs: dict = {}):
muyangli's avatar
muyangli committed
52
53
    os.makedirs(save_dir, exist_ok=True)
    pipeline.set_progress_bar_config(desc="Sampling", leave=False, dynamic_ncols=True, position=1)
54
55
56
57
58
59
60
61
62
63
64
65
66

    if task == "canny":
        processor = CannyDetector()
    elif task == "depth":
        processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
    elif task == "redux":
        processor = FluxPriorReduxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16
        ).to("cuda")
    else:
        assert task in ["t2i", "fill"]
        processor = None

muyangli's avatar
muyangli committed
67
68
69
    for row in tqdm(
        dataset.iter(batch_size=batch_size, drop_last_batch=False),
        desc="Batch",
muyangli's avatar
update  
muyangli committed
70
        total=math.ceil(len(dataset) // batch_size),
muyangli's avatar
muyangli committed
71
72
73
        position=0,
        leave=False,
    ):
muyangli's avatar
muyangli committed
74
75
        filenames = row["filename"]
        prompts = row["prompt"]
76
77
78
79
80
81

        _forward_kwargs = {k: v for k, v in forward_kwargs.items()}

        if task == "canny":
            assert forward_kwargs.get("height", 1024) == 1024
            assert forward_kwargs.get("width", 1024) == 1024
muyangli's avatar
muyangli committed
82
83
84
85
86
87
88
89
90
91
92
93
            control_images = []
            for canny_image_path in row["canny_image_path"]:
                control_image = load_image(canny_image_path)
                control_image = processor(
                    control_image,
                    low_threshold=50,
                    high_threshold=200,
                    detect_resolution=1024,
                    image_resolution=1024,
                )
                control_images.append(control_image)
            _forward_kwargs["control_image"] = control_images
94
        elif task == "depth":
muyangli's avatar
muyangli committed
95
96
97
98
99
100
            control_images = []
            for depth_image_path in row["depth_image_path"]:
                control_image = load_image(depth_image_path)
                control_image = processor(control_image)[0].convert("RGB")
                control_images.append(control_image)
            _forward_kwargs["control_image"] = control_images
101
        elif task == "fill":
muyangli's avatar
muyangli committed
102
103
104
105
106
107
108
109
            images, mask_images = [], []
            for image_path, mask_image_path in zip(row["image_path"], row["mask_image_path"]):
                image = load_image(image_path)
                mask_image = load_image(mask_image_path)
                images.append(image)
                mask_images.append(mask_image)
            _forward_kwargs["image"] = images
            _forward_kwargs["mask_image"] = mask_images
110
        elif task == "redux":
muyangli's avatar
muyangli committed
111
112
113
114
115
            images = []
            for image_path in row["image_path"]:
                image = load_image(image_path)
                images.append(image)
            _forward_kwargs.update(processor(images))
116

muyangli's avatar
muyangli committed
117
118
        seeds = [hash_str_to_int(filename) for filename in filenames]
        generators = [torch.Generator().manual_seed(seed) for seed in seeds]
119
        if task == "redux":
muyangli's avatar
muyangli committed
120
            images = pipeline(generator=generators, **_forward_kwargs).images
121
        else:
muyangli's avatar
muyangli committed
122
123
124
125
            images = pipeline(prompts, generator=generators, **_forward_kwargs).images
        for i, image in enumerate(images):
            filename = filenames[i]
            image.save(os.path.join(save_dir, f"{filename}.png"))
126
127
128
129
130
131
132
        torch.cuda.empty_cache()


def run_test(
    precision: str = "int4",
    model_name: str = "flux.1-schnell",
    dataset_name: str = "MJHQ",
muyangli's avatar
muyangli committed
133
    batch_size: int = 1,
134
135
136
137
138
139
140
141
142
143
144
145
    task: str = "t2i",
    dtype: str | torch.dtype = torch.bfloat16,  # the full precision dtype
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 4,
    guidance_scale: float = 3.5,
    use_qencoder: bool = False,
    attention_impl: str = "flashattn2",  # "flashattn2" or "nunchaku-fp16"
    cpu_offload: bool = False,
    cache_threshold: float = 0,
    lora_names: str | list[str] | None = None,
    lora_strengths: float | list[float] = 1.0,
muyangli's avatar
muyangli committed
146
    max_dataset_size: int = 4,
147
148
149
    i2f_mode: str | None = None,
    expected_lpips: float = 0.5,
):
muyangli's avatar
muyangli committed
150
151
    gc.collect()
    torch.cuda.empty_cache()
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    if isinstance(dtype, str):
        dtype_str = dtype
        if dtype == "bf16":
            dtype = torch.bfloat16
        else:
            assert dtype == "fp16"
            dtype = torch.float16
    else:
        if dtype == torch.bfloat16:
            dtype_str = "bf16"
        else:
            assert dtype == torch.float16
            dtype_str = "fp16"

    dataset = get_dataset(name=dataset_name, max_dataset_size=max_dataset_size)
    model_id_16bit = ORIGINAL_REPO_MAP[model_name]

    folder_name = f"w{width}h{height}t{num_inference_steps}g{guidance_scale}"

    if lora_names is None:
        lora_names = []
    elif isinstance(lora_names, str):
        lora_names = [lora_names]

    if len(lora_names) > 0:
        if isinstance(lora_strengths, (int, float)):
            lora_strengths = [lora_strengths]
        assert len(lora_names) == len(lora_strengths)

        for lora_name, lora_strength in zip(lora_names, lora_strengths):
            folder_name += f"-{lora_name}_{lora_strength}"

muyangli's avatar
muyangli committed
184
    ref_root = os.environ.get("NUNCHAKU_TEST_CACHE_ROOT", os.path.join("test_results", "ref"))
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    save_dir_16bit = os.path.join(ref_root, dtype_str, model_name, folder_name)

    if task in ["t2i", "redux"]:
        pipeline_cls = FluxPipeline
    elif task in ["canny", "depth"]:
        pipeline_cls = FluxControlPipeline
    elif task == "fill":
        pipeline_cls = FluxFillPipeline
    else:
        raise NotImplementedError(f"Unknown task {task}!")

    if not already_generate(save_dir_16bit, max_dataset_size):
        pipeline_init_kwargs = {"text_encoder": None, "text_encoder2": None} if task == "redux" else {}
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
muyangli's avatar
muyangli committed
199
200
201
        gpu_properties = torch.cuda.get_device_properties(0)
        gpu_memory = gpu_properties.total_memory / (1024**2)

muyangli's avatar
muyangli committed
202
203
204
205
206
207
208
209
        if len(lora_names) > 0:
            for i, (lora_name, lora_strength) in enumerate(zip(lora_names, lora_strengths)):
                lora_path = LORA_PATH_MAP[lora_name]
                pipeline.load_lora_weights(
                    os.path.dirname(lora_path), weight_name=os.path.basename(lora_path), adapter_name=f"lora_{i}"
                )
            pipeline.set_adapters([f"lora_{i}" for i in range(len(lora_names))], lora_strengths)

muyangli's avatar
muyangli committed
210
211
        if gpu_memory > 36 * 1024:
            pipeline = pipeline.to("cuda")
muyangli's avatar
muyangli committed
212
213
214
215
216
217
218
        elif gpu_memory < 26 * 1024:
            pipeline.transformer.enable_group_offload(
                onload_device=torch.device("cuda"),
                offload_device=torch.device("cpu"),
                offload_type="leaf_level",
                use_stream=True,
            )
muyangli's avatar
muyangli committed
219
220
221
222
223
224
225
226
227
            if pipeline.text_encoder is not None:
                pipeline.text_encoder.to("cuda")
            if pipeline.text_encoder_2 is not None:
                apply_group_offloading(
                    pipeline.text_encoder_2,
                    onload_device=torch.device("cuda"),
                    offload_type="block_level",
                    num_blocks_per_group=2,
                )
muyangli's avatar
muyangli committed
228
            pipeline.vae.to("cuda")
muyangli's avatar
muyangli committed
229
        else:
230
            pipeline.enable_model_cpu_offload()
231
232

        run_pipeline(
muyangli's avatar
muyangli committed
233
            batch_size=batch_size,
234
235
236
237
238
239
240
241
242
243
244
245
246
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_16bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
muyangli's avatar
muyangli committed
247
        gc.collect()
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        torch.cuda.empty_cache()

    precision_str = precision
    if use_qencoder:
        precision_str += "-qe"
    if attention_impl == "flashattn2":
        precision_str += "-fa2"
    else:
        assert attention_impl == "nunchaku-fp16"
        precision_str += "-nfp16"
    if cpu_offload:
        precision_str += "-co"
    if cache_threshold > 0:
        precision_str += f"-cache{cache_threshold}"
    if i2f_mode is not None:
        precision_str += f"-i2f{i2f_mode}"
muyangli's avatar
update  
muyangli committed
264
265
    if batch_size > 1:
        precision_str += f"-bs{batch_size}"
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    save_dir_4bit = os.path.join("test_results", dtype_str, precision_str, model_name, folder_name)
    if not already_generate(save_dir_4bit, max_dataset_size):
        pipeline_init_kwargs = {}
        model_id_4bit = NUNCHAKU_REPO_PATTERN_MAP[model_name].format(precision=precision)

        if i2f_mode is not None:
            nunchaku._C.utils.set_faster_i2f_mode(i2f_mode)

        transformer = NunchakuFluxTransformer2dModel.from_pretrained(
            model_id_4bit, offload=cpu_offload, torch_dtype=dtype
        )
        transformer.set_attention_impl(attention_impl)

        if len(lora_names) > 0:
            if len(lora_names) == 1:  # directly load the lora
                lora_path = LORA_PATH_MAP[lora_names[0]]
                lora_strength = lora_strengths[0]
                transformer.update_lora_params(lora_path)
                transformer.set_lora_strength(lora_strength)
            else:
                composed_lora = compose_lora(
                    [
                        (LORA_PATH_MAP[lora_name], lora_strength)
                        for lora_name, lora_strength in zip(lora_names, lora_strengths)
                    ]
                )
                transformer.update_lora_params(composed_lora)

        pipeline_init_kwargs["transformer"] = transformer
        if task == "redux":
            pipeline_init_kwargs.update({"text_encoder": None, "text_encoder_2": None})
        elif use_qencoder:
            text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
            pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
        if cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        else:
            pipeline = pipeline.to("cuda")
        run_pipeline(
muyangli's avatar
muyangli committed
307
            batch_size=batch_size,
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_4bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del transformer
        del pipeline
        # release the gpu memory
muyangli's avatar
muyangli committed
322
        gc.collect()
323
324
325
        torch.cuda.empty_cache()
    lpips = compute_lpips(save_dir_16bit, save_dir_4bit)
    print(f"lpips: {lpips}")
muyangli's avatar
muyangli committed
326
    assert lpips < expected_lpips * 1.1