test_flux_teacache.py 4.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import gc
import os

import pytest
import torch
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline

from nunchaku import NunchakuFluxTransformer2dModel
from nunchaku.caching.teacache import TeaCache
from nunchaku.utils import get_precision, is_turing
Muyang Li's avatar
Muyang Li committed
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from .utils import already_generate, compute_lpips, offload_pipeline


@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
@pytest.mark.parametrize(
    "height,width,num_inference_steps,prompt,name,seed,threshold,expected_lpips",
    [
        (
            1024,
            1024,
            30,
            "A cat holding a sign that says hello world",
            "cat",
            0,
            0.6,
            0.363 if get_precision() == "int4" else 0.363,
        ),
        (
            512,
            2048,
            25,
            "The brown fox jumps over the lazy dog",
            "fox",
            1234,
            0.7,
Muyang Li's avatar
Muyang Li committed
37
            0.417 if get_precision() == "int4" else 0.349,
38
39
40
41
42
43
44
45
46
        ),
        (
            1024,
            768,
            50,
            "A scene from the Titanic movie featuring the Muppets",
            "muppets",
            42,
            0.3,
47
            0.507 if get_precision() == "int4" else 0.495,
48
49
50
51
52
53
54
55
56
        ),
        (
            1024,
            768,
            50,
            "A crystal ball showing a waterfall",
            "waterfall",
            23,
            0.6,
57
            0.253 if get_precision() == "int4" else 0.254,
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        ),
    ],
)
def test_flux_teacache(
    height: int,
    width: int,
    num_inference_steps: int,
    prompt: str,
    name: str,
    seed: int,
    threshold: float,
    expected_lpips: float,
):
    gc.collect()
    torch.cuda.empty_cache()

    device = torch.device("cuda")
    precision = get_precision()

    ref_root = os.environ.get("NUNCHAKU_TEST_CACHE_ROOT", os.path.join("test_results", "ref"))
    results_dir_16_bit = os.path.join(ref_root, "bf16", "flux.1-dev", "teacache", name)
    results_dir_4_bit = os.path.join("test_results", precision, "flux.1-dev", "teacache", name)

    os.makedirs(results_dir_16_bit, exist_ok=True)
    os.makedirs(results_dir_4_bit, exist_ok=True)

    # First, generate results with the 16-bit model
    if not already_generate(results_dir_16_bit, 1):
        pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)

        # Possibly offload the model to CPU when GPU memory is scarce
        pipeline = offload_pipeline(pipeline)
        result = pipeline(
            prompt=prompt,
            num_inference_steps=num_inference_steps,
            height=height,
            width=width,
            generator=torch.Generator(device=device).manual_seed(seed),
        ).images[0]
        result.save(os.path.join(results_dir_16_bit, f"{name}_{seed}.png"))

        # Clean up the 16-bit model
        del pipeline.transformer
        del pipeline.text_encoder
        del pipeline.text_encoder_2
        del pipeline.vae
        del pipeline
        del result
        gc.collect()
        torch.cuda.synchronize()
        torch.cuda.empty_cache()

    free, total = torch.cuda.mem_get_info()  # bytes
    print(f"After 16-bit generation: Free: {free/1024**2:.0f} MB  /  Total: {total/1024**2:.0f} MB")

    # Then, generate results with the 4-bit model
    if not already_generate(results_dir_4_bit, 1):
115
116
117
        transformer = NunchakuFluxTransformer2dModel.from_pretrained(
            f"mit-han-lab/nunchaku-flux.1-dev/svdq-{precision}_r32-flux.1-dev.safetensors"
        )
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        pipeline = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
        ).to("cuda")
        with torch.inference_mode():
            with TeaCache(
                model=pipeline.transformer, num_steps=num_inference_steps, rel_l1_thresh=threshold, enabled=True
            ):
                result = pipeline(
                    prompt=prompt,
                    num_inference_steps=num_inference_steps,
                    height=height,
                    width=width,
                    generator=torch.Generator(device=device).manual_seed(seed),
                ).images[0]
        result.save(os.path.join(results_dir_4_bit, f"{name}_{seed}.png"))

        # Clean up the 4-bit model
        del pipeline
        del transformer
        gc.collect()
        torch.cuda.synchronize()
        torch.cuda.empty_cache()

    free, total = torch.cuda.mem_get_info()  # bytes
    print(f"After 4-bit generation: Free: {free/1024**2:.0f} MB  /  Total: {total/1024**2:.0f} MB")

    lpips = compute_lpips(results_dir_16_bit, results_dir_4_bit)
    print(f"lpips: {lpips}")
    assert lpips < expected_lpips * 1.1