gemm_w8a8.cu 6.02 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include "zgemm.h"
#include "gemm_w8a8.cuh"

namespace nunchaku::kernels {

void quantize_w8a8_act(Tensor input, Tensor output, Tensor oscales, bool fuse_glu) {
    using GEMM = GEMM_W8A8;

    int M = input.numel() / input.shape[-1];
    int K = input.shape[-1];

    assert(output.dtype() == Tensor::INT8);
    assert(output.numel() / output.shape[-1] == M);
    assert(output.shape[-1] == fuse_glu ? K / 2 : K);

    assert(isTypeMatch<GEMM::half_t>(oscales.dtype()));
    assert(oscales.numel() == M * 1);

    auto launch = [&]<bool FUSE_GLU>() {
        
        using kernel = GEMM::quantize_w8a8_act_kernel<FUSE_GLU>;

        assert(kernel::check(M, K));
        dim3 grid = kernel::gridSize(M, K);
        dim3 block = kernel::blockSize(M, K);

        auto func = invoke_kernel<kernel, const GEMM::half_t *, GEMM::packed_act_t *, GEMM::packed_ascale_t *, int, bool>;

        checkCUDA(cudaFuncSetAttribute(func, cudaFuncAttributeMaxDynamicSharedMemorySize, 92160));

        func<<<grid, block, kernel::smemSize(M, K)>>>(
            input.data_ptr<GEMM::half_t>(),
            output.data_ptr<GEMM::packed_act_t>(),
            oscales.data_ptr<GEMM::packed_ascale_t>(),
            K,
            false
        );
        checkCUDA(cudaGetLastError());
    };

    if (fuse_glu) {
        launch.template operator()<true>();
    } else {
        launch.template operator()<false>();
    }
}

void gemm_w8a8(Tensor act,      // [M, K]
               Tensor wgt,      // [N, K]
               Tensor out,      // [M, N]
               Tensor ascales,  // [1, M]
               Tensor wscales,   // [1, N]
               Tensor bias
               )
{
    using GEMM = GEMM_W8A8;

    int M = act.numel() / act.shape[-1];
    int N = wgt.shape[0];
    int K = act.shape[-1];
    assert(K == wgt.shape[1]);

    int actualM = 0;
    int actualN = 0;
    if (out.valid()) {
        actualM = out.numel() / out.shape[-1];
        actualN = out.shape[-1];

        assert(actualM <= M && M - actualM < GEMM::BLOCK_M);
        assert(actualN <= N && N - actualN < GEMM::BLOCK_N);
    }

    auto launch = [&]<typename Epilogue>(Epilogue::Arguments args) {
        dim3 grid(M / GEMM::BLOCK_M, N / GEMM::BLOCK_N);

        bool swapBlockMN = M > N * 2;
        if (swapBlockMN) {
            std::swap(grid.x, grid.y);
        }

        invoke_kernel<GEMM::gemm_w8a8_kernel<Epilogue>><<<grid, GEMM::WARP_SIZE * GEMM::NUM_WARPS>>>(
            act.data_ptr<GEMM::packed_act_t>(),
            wgt.data_ptr<GEMM::packed_wgt_t>(),
            ascales.data_ptr<GEMM::packed_ascale_t>(),
            wscales.data_ptr<GEMM::packed_wscale_t>(),
            // out.valid() ? out.data_ptr<GEMM::half_t>() : nullptr,
            M, N, K, args,
            swapBlockMN,
            false
        );
        checkCUDA(cudaGetLastError());
    };

    auto launch_bias = [&]<typename NextEpilogue>(NextEpilogue::Arguments nextArgs) {
        if (!bias.valid()) {
            return launch.template operator()<NextEpilogue>(nextArgs);
        }

        assert(bias.numel() == N);

        // append EpilgoueNop to workaround mismatched memory layout of std::tuple between device and host code on Windows
        // ** sizeof(std::tuple<std::tuple<int>>) == 8 on device **
        using Epilogue = GEMM::EpilogueCombination<GEMM::EpilogueBias, NextEpilogue, GEMM::EpilogueNop>;
        return launch.template operator()<Epilogue>({
            GEMM::EpilogueBias::Arguments{
                .bias = bias.data_ptr<GEMM::packed_wscale_t>(),
            },
            nextArgs,
            {}
        });
    };

    launch_bias.template operator()<GEMM::EpilogueDefault>(GEMM::EpilogueDefault::Arguments{
        .out = out.data_ptr<GEMM::half_t>(),
        .actualM = actualM,
        .actualN = actualN,
    });
}

#if 0
void gemm_w8a8_fuse_litela(
    Tensor act,      // [B, (M), K]
    Tensor wgt,      // [N, K]
    Tensor out_q,    // [B, (M), N / 3]
    Tensor out_vk,   // [B, num_heads, head_dim + 1, head_dim]
    Tensor ascales,  // [1, M]
    Tensor wscales   // [1, N]
) {
    using GEMM = GEMM_W8A8;
    using Epilogue = GEMM::EpilogueLiteLA;

    int M = act.numel() / act.shape[-1];
    int N = wgt.shape[0];
    int K = act.shape[-1];
    assert(K == wgt.shape[1]);

    assert(out_vk.ndims() == 4);
    assert(out_vk.shape[2] == Epilogue::LITELA_HEAD_DIM + 1);
    assert(out_vk.shape[3] == Epilogue::LITELA_HEAD_DIM);
    assert(out_vk.shape[1] * Epilogue::LITELA_HEAD_DIM * 3 == N);

    int batch_size = out_vk.shape[0];
    int num_heads = out_vk.shape[1];

    assert(M % batch_size == 0);
    int batch_m = M / batch_size;

    Epilogue::Arguments epilogueArgs;
    epilogueArgs.batch_m = act.shape[1];
    epilogueArgs.out_q = out_q.data_ptr<GEMM::half_t>();
    epilogueArgs.out_vk = out_vk.data_ptr<float>();

    checkCUDA(cudaMemsetAsync(out_vk.data_ptr(), 0, out_vk.buffer->getSize()));

    auto func = invoke_kernel<GEMM::gemm_w8a8_kernel<Epilogue>, 
        const GEMM::packed_act_t *, 
        const GEMM::packed_wgt_t *, 
        const GEMM::packed_ascale_t *,
        const GEMM::packed_wscale_t *,
        // GEMM::half_t *,
        int, int, int,
        Epilogue::Arguments,
        bool,
        bool>;

    checkCUDA(cudaFuncSetAttribute(func, cudaFuncAttributeMaxDynamicSharedMemorySize, Epilogue::SHMEM_SIZE));

    dim3 grid(M / GEMM::BLOCK_M, N / GEMM::BLOCK_N);

    bool swapBlockMN = M > N * 2;
    if (swapBlockMN) {
        std::swap(grid.x, grid.y);
    }

    func<<<grid, GEMM::WARP_SIZE * GEMM::NUM_WARPS, Epilogue::SHMEM_SIZE>>>(
        act.data_ptr<GEMM::packed_act_t>(),
        wgt.data_ptr<GEMM::packed_wgt_t>(),
        ascales.data_ptr<GEMM::packed_ascale_t>(),
        wscales.data_ptr<GEMM::packed_wscale_t>(),
        // nullptr,
        M, N, K, epilogueArgs, 
        swapBlockMN,
        false
    );
    checkCUDA(cudaGetLastError());

    invoke_kernel<Epilogue::vk_mul_q_kernel><<<dim3(batch_m / 128, num_heads, batch_size), 128>>>(
        out_q.data_ptr<GEMM::half_t>(),
        out_vk.data_ptr<float>(),
        1e-6f
    );
    checkCUDA(cudaGetLastError());
}
#endif

};  // namespace nunchaku::kernels