test_flux_speed.py 2.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import logging
import time

import pytest
import torch
from diffusers import FluxPipeline

from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.utils import get_precision

_LOGGER = logging.getLogger(__name__)

_EXPECTED_LATENCIES = {
    "NVIDIA GeForce RTX 3090": 16.05321,
    "NVIDIA GeForce RTX 4090": 6.49650,
    "NVIDIA GeForce RTX 5090": 4.79388,
}


@pytest.mark.skipif(
    torch.cuda.get_device_name(0) not in _EXPECTED_LATENCIES, reason="Skip tests due to using unsupported GPUs"
)
@pytest.mark.parametrize(
    "warmup_times,test_times,num_inference_steps,guidance_scale,use_qencoder,expected_latency",
    [
        (2, 5, 30, 3.5, True, _EXPECTED_LATENCIES[torch.cuda.get_device_name(0)]),
    ],
)
def test_flux_speed(
    warmup_times: int,
    test_times: int,
    num_inference_steps: int,
    guidance_scale: float,
    use_qencoder: bool,
    expected_latency: float,
):
    precision = get_precision()

    pipeline_init_kwargs = {
        "transformer": NunchakuFluxTransformer2dModel.from_pretrained(
            f"mit-han-lab/nunchaku-flux.1-schnell/svdq-{precision}_r32-flux.1-schnell.safetensors", offload=False
        )
    }
    if use_qencoder:
        text_encoder_2 = NunchakuT5EncoderModel.from_pretrained(
            "mit-han-lab/nunchaku-t5/awq-int4-flux.1-t5xxl.safetensors"
        )
        pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
    pipeline = FluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, **pipeline_init_kwargs
    )

    pipeline = pipeline.to("cuda")

    latency_list = []
    dummy_prompt = "A cat holding a sign that says hello world"

    for _ in range(warmup_times):
        pipeline(prompt=dummy_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)
        torch.cuda.synchronize()
    for _ in range(test_times):
        start_time = time.time()
        pipeline(prompt=dummy_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)
        torch.cuda.synchronize()
        end_time = time.time()
        latency_list.append(end_time - start_time)

    average_latency = sum(latency_list) / len(latency_list)

    _LOGGER.debug(f"Latency: {average_latency:.5f} s")

    assert average_latency < expected_latency * 1.1