Linear.cpp 16.3 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
#include "Linear.h"
muyangli's avatar
muyangli committed
2
#include "kernels/zgemm/zgemm.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
3
4
5
#include "kernels/gemm_f16.h"
#include "kernels/misc_kernels.h"
#include "kernels/awq/gemv_awq.h"
muyangli's avatar
muyangli committed
6
7
8
9
10
11
12
13
14
15
16
17
18
#include "kernels/dwconv.h"

#include <nvtx3/nvToolsExt.h>

using namespace nunchaku;

GEMM_F16::GEMM_F16(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device) :
    in_features(in_features), out_features(out_features)
{
    this->weight = Tensor::allocate({out_features, in_features}, dtype, device);
    this->bias = use_bias ? Tensor::allocate({out_features}, dtype, device) : Tensor{};

    registerParams
muyangli's avatar
muyangli committed
19
        (weight, "weight", ParamFlags::LazyLoad)
muyangli's avatar
muyangli committed
20
21
22
23
24
25
26
27
        (bias, "bias")
    ;
}

Tensor GEMM_F16::forward(Tensor x) {
    Tensor out = gemm_f16(x, this->weight, {}, this->bias, 1.0f);
    return out;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
28
29

GEMV_AWQ::GEMV_AWQ(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device) : 
muyangli's avatar
muyangli committed
30
    in_features(in_features), out_features(out_features), group_size(64), lora_rank(0), lora_scale(1.0f), device(device)
Zhekai Zhang's avatar
Zhekai Zhang committed
31
32
33
34
35
36
37
38
39
40
41
{
    this->qweight = Tensor::allocate({out_features / 4, ceilDiv(in_features, 8) * 4}, Tensor::INT32, device);
    this->wscales = Tensor::allocate({ceilDiv(in_features, group_size), out_features}, dtype, device);
    this->wzeros  = Tensor::allocate({ceilDiv(in_features, group_size), out_features}, dtype, device);
    this->bias = use_bias ? Tensor::allocate({out_features}, dtype, device) : Tensor{};

    // !!! lora layout is different from w4a4 !!!
    this->lora_down = Tensor::allocate({lora_rank, in_features}, dtype, device, true);
    this->lora_up = Tensor::allocate({out_features, lora_rank}, dtype, device, true);

    registerParams
muyangli's avatar
muyangli committed
42
        (qweight, "qweight", ParamFlags::LazyLoad)
Zhekai Zhang's avatar
Zhekai Zhang committed
43
44
45
46
47
48
49
50
51
52
53
54
        (wscales, "wscales")
        (wzeros, "wzeros")
        (bias, "bias")
        (lora_down, "lora_down", ParamFlags::Optional)
        (lora_up, "lora_up", ParamFlags::Optional)
    ;
}

void GEMV_AWQ::loadParam(std::string key, Tensor &dst, Tensor src) {
    if (key == "lora_down" || key == "lora_up") {
        assert(src.ndims() == 2);
        if (dst.shape.dataExtent != src.shape.dataExtent) {
55
56
            dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
57
58
59
60
61
            if (key == "lora_down") {
                const int new_rank = dst.shape[0];
                this->lora_rank = new_rank;
            }
        } else {
62
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        }
    } else {
        Module::loadParam(key, dst, src);
    }
}

Tensor GEMV_AWQ::forward(Tensor x) {
    debug("x", x);

    const int M = (int)x.numel() / x.shape[-1];
    Tensor out = gemv_awq(x, this->qweight, this->wscales, this->wzeros, M, out_features, in_features, group_size);
    if (bias.valid()) {
        // TODO: batch
        assert(out.numel() == bias.numel());
muyangli's avatar
muyangli committed
77
        out = kernels::add(out, bias.view(out.shape.dataExtent));
Zhekai Zhang's avatar
Zhekai Zhang committed
78
79
80
81
82
    }

    debug("out_before_lora", out);

    if (this->lora_rank > 0) {
muyangli's avatar
muyangli committed
83
        Tensor lora_act = gemm_f16(x, this->lora_down, {}, {}, 1.0f);
Zhekai Zhang's avatar
Zhekai Zhang committed
84
85
        debug("lora_act", lora_act);

muyangli's avatar
muyangli committed
86
        Tensor lora_out = gemm_f16(lora_act, this->lora_up, {}, {}, this->lora_scale);
Zhekai Zhang's avatar
Zhekai Zhang committed
87
88
        debug("lora_out", lora_out);

muyangli's avatar
muyangli committed
89
        out = kernels::add(out, lora_out);
Zhekai Zhang's avatar
Zhekai Zhang committed
90
91
92
93
94
95
96
97
98
99
    }

    debug("out", out);
    
    return out;
}


#define NO_LORA_FUSION 0

100
GEMM_W4A4::GEMM_W4A4(int in_features, int out_features, bool bias, bool use_fp4, Tensor::ScalarType dtype, Device device) : 
muyangli's avatar
muyangli committed
101
102
    in_features(in_features), out_features(out_features), 
    in_features_pad(ceilDiv(in_features, 128) * 128), out_features_pad(ceilDiv(out_features, 128) * 128),
103
    use_fp4(use_fp4),
muyangli's avatar
muyangli committed
104
    lora_rank(0), dtype(dtype), device(device)
Zhekai Zhang's avatar
Zhekai Zhang committed
105
{
muyangli's avatar
muyangli committed
106
    this->qweight = Tensor::allocate({out_features_pad, in_features_pad / 2}, Tensor::INT8, device, true);
107
108
109
110
111
    if (use_fp4) {
        this->wscales = Tensor::allocate({in_features_pad / 16, out_features_pad}, Tensor::FP8_E4M3, device, true);
    } else {
        this->wscales = Tensor::allocate({in_features_pad / 64, out_features_pad}, dtype, device, true);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
112

muyangli's avatar
muyangli committed
113
    this->bias = bias ? Tensor::allocate({out_features_pad}, dtype, device, true) : Tensor{};
Zhekai Zhang's avatar
Zhekai Zhang committed
114

muyangli's avatar
muyangli committed
115
116
    this->lora_down = Tensor::allocate({in_features_pad, lora_rank}, dtype, device, true);
    this->lora_up = Tensor::allocate({out_features_pad, lora_rank}, dtype, device, true);
Zhekai Zhang's avatar
Zhekai Zhang committed
117
118

    // TODO: smooth factor in non-Lora fusion
muyangli's avatar
muyangli committed
119
    this->smooth = Tensor::allocate({in_features_pad}, dtype, device, true);
Zhekai Zhang's avatar
Zhekai Zhang committed
120

121
122
123
124
125
126
    // FIXME: reset wtscale and wcscales to default values when reloading the weights
    this->wtscale = Tensor::allocate({1}, Tensor::FP32, Device::cpu(), true);
    *this->wtscale.data_ptr<float>() = 1.0f;

    this->wcscales = Tensor::allocate({0}, dtype, device, true);

Zhekai Zhang's avatar
Zhekai Zhang committed
127
    registerParams
muyangli's avatar
muyangli committed
128
        (qweight, "qweight", ParamFlags::LazyLoad)
Zhekai Zhang's avatar
Zhekai Zhang committed
129
130
131
132
133
        (wscales, "wscales")
        (this->bias, "bias")
        (lora_down, "lora_down", ParamFlags::Optional)
        (lora_up, "lora_up", ParamFlags::Optional)
        (smooth, "smooth")
134
135
        (wtscale, "wtscale", ParamFlags::Optional)
        (wcscales, "wcscales", ParamFlags::Optional)
Zhekai Zhang's avatar
Zhekai Zhang committed
136
137
138
139
140
141
142
143
144
145
146
    ;

#if NO_LORA_FUSION
    checkCUBLAS(cublasCreate(&handle));
#endif
}

void GEMM_W4A4::loadParam(std::string key, Tensor &dst, Tensor src) {
    if (key == "lora_down" || key == "lora_up") {
        assert(src.ndims() == 2);
        if (dst.shape.dataExtent != src.shape.dataExtent) {
147
148
            dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
149
150
151
            this->lora_rank = dst.shape[1];
            this->lora_scales.resize(ceilDiv(this->lora_rank, 16), 1.0f);
        } else {
152
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
153
        }
154
155
156
    } else if (key == "wcscales") {
        assert(src.ndims() == 1);
        assert(src.shape[0] == out_features_pad);
157
158
        dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
        Module::loadParam(key, dst, src);
159
160
161
162
163
164
165
    } else if (key == "wtscale") {
        assert(src.numel() == 1);
        if (src.dtype() == Tensor::BF16) {
            *dst.data_ptr<float>() = float(*src.data_ptr<__nv_bfloat16>());
        } else if (src.dtype() == Tensor::FP16) {
            *dst.data_ptr<float>() = float(*src.data_ptr<half>());
        } else if (src.dtype() == Tensor::FP32) {
166
            Module::loadParam(key, dst, src);
167
168
169
        } else {
            assert(false);
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
170
171
172
173
174
    } else {
        Module::loadParam(key, dst, src);
    }
}

muyangli's avatar
muyangli committed
175
176
177
178
179
180
181
182
Tensor GEMM_W4A4::forward(Tensor x) {
    return std::get<Tensor>(this->forward(x, FuseOptions::EMPTY, nullptr));
}

Tensor GEMM_W4A4::forward_silu(Tensor x) {
    return std::get<Tensor>(this->forward(x, FuseOptions::SILU, nullptr));
}

Zhekai Zhang's avatar
Zhekai Zhang committed
183
std::variant<Tensor, GEMM_W4A4::QuantizedActivation> GEMM_W4A4::forward(Tensor x, FuseOptions fuse, GEMM_W4A4 *nextGEMM) {
muyangli's avatar
muyangli committed
184
    return forward_quant(quantize(x, false), fuse, nextGEMM);
Zhekai Zhang's avatar
Zhekai Zhang committed
185
186
}

187
void GEMM_W4A4::forward(Tensor x, Tensor out, Tensor pool, Tensor norm_q, Tensor norm_k, Tensor rotary_emb, Tensor out_q, Tensor out_k, Tensor out_v, int numTokens) {
muyangli's avatar
muyangli committed
188
    QuantizedActivation qact = quantize(x, false);
Zhekai Zhang's avatar
Zhekai Zhang committed
189
190
191
192
193
194
195
196
197
198
199

#if !NO_LORA_FUSION

#if 0
    Tensor dummy = Tensor::empty_like(qact.lora_act);
    dummy.zero_();

    gemm_w4a4(qact.act, qweight, out, {}, qact.ascales, wscales, {}, pool, dummy, this->lora_up, {}, {}, norm_q, norm_k, rotary_emb, this->bias, {}, qact.is_unsigned);
    debug("gemm.nolora.out", out);
#endif

200
201
    kernels::gemm_w4a4(
        qact.act, qweight, out, {}, qact.ascales, wscales, {}, pool, qact.lora_act, this->lora_up, {}, {}, norm_q, norm_k, rotary_emb, this->bias, {}, {}, {}, qact.is_unsigned, this->lora_scales, false,
202
203
        use_fp4, *this->wtscale.data_ptr<float>(), wcscales.numel() > 0 ? wcscales: Tensor{},
        out_q, out_k, out_v, numTokens
204
    );
Zhekai Zhang's avatar
Zhekai Zhang committed
205
206
207
208
209

    debug("gemm.out", out);
#else
    const int M = (int)qact.act.numel() / qact.act.shape[-1];

muyangli's avatar
muyangli committed
210
    kernels::gemm_w4a4(qact.act, qweight, out, {}, qact.ascales, wscales, {}, pool, {}, {}, {}, {}, norm_q, norm_k, rotary_emb, this->bias, {}, qact.is_unsigned, this->lora_scales);
Zhekai Zhang's avatar
Zhekai Zhang committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    nvtxRangePushA("LoraUp");

    static const half one = 1.0;
    static const half zero = 0.0;
    // lora_up: [M, R] * [OC, R] => [M, OC]
    // cublas view: [OC, R] * [M, R]^T
    checkCUBLAS(cublasHgemm(
        handle, 
        CUBLAS_OP_T, CUBLAS_OP_N, 
        this->out_features, M, this->lora_rank,
        &one,
        this->lora_up.data_ptr<half>(),
        this->lora_rank,
        qact.lora_act.data_ptr<half>(),
        this->lora_rank,
        &one, 
        out.data_ptr<half>(),
        this->out_features));

    nvtxRangePop();
#endif
}

std::variant<Tensor, GEMM_W4A4::QuantizedActivation> GEMM_W4A4::forward_quant(QuantizedActivation qact, FuseOptions fuse, GEMM_W4A4 *nextGEMM) {
    Tensor out;
    QuantizedActivation qout;

    Tensor next_lora;
    Tensor next_smooth;

    const int M = (int)qact.act.numel() / qact.act.shape[-1];

muyangli's avatar
muyangli committed
244
245
246
247
    if (fuse == FuseOptions::EMPTY || fuse == FuseOptions::SILU) {
        // auto shape = TensorShape(qact.act.shape.dataExtent);
        // shape[-1] = out_features;
        auto shape = TensorShape(qact.actShape.dataExtent);
Zhekai Zhang's avatar
Zhekai Zhang committed
248
        shape[-1] = out_features;
muyangli's avatar
muyangli committed
249
        out = Tensor::allocate(shape, dtype, device);
Zhekai Zhang's avatar
Zhekai Zhang committed
250
    } else {
muyangli's avatar
muyangli committed
251
        qout.act = Tensor::allocate({M, out_features_pad / 2}, Tensor::INT8, device);
252
        if (use_fp4) {
muyangli's avatar
muyangli committed
253
            qout.ascales = Tensor::allocate({out_features_pad / 16, M}, Tensor::FP8_E4M3, device);
254
        } else {
muyangli's avatar
muyangli committed
255
            qout.ascales = Tensor::allocate({out_features_pad / 64, M}, dtype, device);
256
        }
muyangli's avatar
muyangli committed
257
        qout.lora_act = Tensor::allocate({M, lora_rank}, Tensor::FP32, device);
258
        qout.is_unsigned = !use_fp4;
muyangli's avatar
muyangli committed
259
        qout.actShape = qact.actShape;
Zhekai Zhang's avatar
Zhekai Zhang committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

        next_lora = nextGEMM->lora_down;
        next_smooth = nextGEMM->smooth;
    }

#if !NO_LORA_FUSION

#if 0
    Tensor dummy = Tensor::empty_like(qact.lora_act);
    dummy.zero_();

    gemm_w4a4(qact.act, qweight, out, qout.act, qact.ascales, wscales, qout.ascales, {}, dummy, this->lora_up, next_lora, qout.lora_act, {}, {}, {}, this->bias, next_smooth, qact.is_unsigned);

    if (fuse == FuseOptions::EMPTY) {
        debug("gemm.nolora.out", out);
    } else {
        debug("gemm.nolora.qout", qout.act);
        debug("gemm.nolora.oscales", qout.ascales);
        debug("gemm.nolora.lora_act_out", qout.lora_act);
    }
#endif

282
283
    kernels::gemm_w4a4(
        qact.act, qweight, out, qout.act, qact.ascales, wscales, qout.ascales, {}, qact.lora_act, this->lora_up, next_lora, qout.lora_act, {}, {}, {}, this->bias, next_smooth, {}, {}, qact.is_unsigned, this->lora_scales, fuse == FuseOptions::SILU,
284
285
        use_fp4, *this->wtscale.data_ptr<float>(), wcscales.numel() > 0 ? wcscales: Tensor{},
        {}, {}, {}, 0
286
    );
Zhekai Zhang's avatar
Zhekai Zhang committed
287

muyangli's avatar
muyangli committed
288
    if (fuse == FuseOptions::EMPTY || fuse == FuseOptions::SILU) {
Zhekai Zhang's avatar
Zhekai Zhang committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        debug("gemm.out", out);
    } else {
        debug("gemm.qout", qout.act);
        debug("gemm.oscales", qout.ascales);
        debug("gemm.lora_act_out", qout.lora_act);
    }

    
#else
    if (!out.valid()) {
        auto shape = TensorShape(qact.act.shape.dataExtent);
        shape[-1] = out_features;
        out = Tensor::allocate(shape, Tensor::FP16, qweight.device());
    }

muyangli's avatar
muyangli committed
304
    kernels::gemm_w4a4(qact.act, qweight, out, qout.act, qact.ascales, wscales, qout.ascales, {}, {}, {}, {}, {}, {}, {}, {}, this->bias, next_smooth, qact.is_unsigned, this->lora_scales);
Zhekai Zhang's avatar
Zhekai Zhang committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    nvtxRangePushA("LoraUp");

    static const half one = 1.0;
    static const half zero = 0.0;

    // lora_up: [M, R] * [OC, R]^T => [M, OC]
    // cublas view: [R, OC]^T * [R, M] => [OC, M]
    // lora_up layout wrong?
    checkCUBLAS(cublasHgemm(
        handle, 
        CUBLAS_OP_T, CUBLAS_OP_N, 
        this->out_features, M, this->lora_rank,
        &one,
        this->lora_up.data_ptr<half>(),
        this->lora_rank,
        qact.lora_act.data_ptr<half>(),
        this->lora_rank,
        &one, 
        out.data_ptr<half>(),
        this->out_features));

    nvtxRangePop();

    if (fuse == FuseOptions::GELU_QUANT) {
        nvtxRangePushA("LoraDown");
        // IC is for next lora (OC of this layer)
        // lora_down: [M, IC] * [IC, R] => [M, R]
        // cublas view: [R, IC] * [IC, M] => [R, M]
        checkCUBLAS(cublasHgemm(
            handle, 
            CUBLAS_OP_N, CUBLAS_OP_N, 
            this->lora_rank, M, this->out_features,
            &one,
            next_lora.data_ptr<half>(),
            this->lora_rank,
            out.data_ptr<half>(),
            this->out_features,
            &zero, 
            qout.lora_act.data_ptr<half>(),
            this->lora_rank));

        out = {};

        nvtxRangePop();
    }

#endif
    if (out.valid()) {
        return out;
    }
    return qout;
}

muyangli's avatar
muyangli committed
359
360
361
362
363
364
365
Tensor GEMM_W4A4::forward_quant(QuantizedActivation qact) {
    return std::get<Tensor>(this->forward_quant(qact, FuseOptions::EMPTY, nullptr));
}

GEMM_W4A4::QuantizedActivation GEMM_W4A4::quantize(Tensor x, bool fuse_glu) {
    const int actualM = x.numel() / x.shape[-1];
    const int M = ceilDiv(actualM, 256) * 256;
Zhekai Zhang's avatar
Zhekai Zhang committed
366

muyangli's avatar
muyangli committed
367
368
    // auto shape = TensorShape(x.shape.dataExtent);
    // shape[-1] = in_features / 2;
Zhekai Zhang's avatar
Zhekai Zhang committed
369
370

    QuantizedActivation qact;
muyangli's avatar
muyangli committed
371
    qact.act = Tensor::allocate({M, in_features_pad / 2}, Tensor::INT8, device);
372
    if (use_fp4) {
muyangli's avatar
muyangli committed
373
        qact.ascales = Tensor::allocate({in_features_pad / 16, M}, Tensor::FP8_E4M3, device);
374
    } else {
muyangli's avatar
muyangli committed
375
        qact.ascales = Tensor::allocate({in_features_pad / 64, M}, dtype, device);
376
    }
muyangli's avatar
muyangli committed
377
    qact.lora_act = Tensor::allocate({M, lora_rank}, Tensor::FP32, device);
Zhekai Zhang's avatar
Zhekai Zhang committed
378
    qact.is_unsigned = false;
muyangli's avatar
muyangli committed
379
    qact.actShape = x.shape.dataExtent;
Zhekai Zhang's avatar
Zhekai Zhang committed
380
381
382
383
384

#if !NO_LORA_FUSION
    debug("quantize.x", x);
    debug("quantize.smooth", this->smooth);

385
    kernels::quantize_w4a4_act_fuse_lora(x, qact.act, qact.ascales, this->lora_down, qact.lora_act, this->smooth, fuse_glu, use_fp4);
Zhekai Zhang's avatar
Zhekai Zhang committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    debug("quantize.qact", qact.act);
    debug("quantize.ascales", qact.ascales);
    debug("quantize.lora_act", qact.lora_act);
#else 
    static const half one = 1.0;
    static const half zero = 0.0;

    nvtxRangePushA("LoraDown");

    // lora_down: [M, IC] * [IC, R] => [M, R]
    // cublas view: [R, IC] * [IC, M]
    checkCUBLAS(cublasHgemm(
        handle, 
        CUBLAS_OP_N, CUBLAS_OP_N, 
        this->lora_rank, M, this->in_features,
        &one,
        lora_down.data_ptr<half>(),
        this->lora_rank,
        x.data_ptr<half>(),
        this->in_features,
        &zero, 
        qact.lora_act.data_ptr<half>(),
        this->lora_rank));

    nvtxRangePop();

muyangli's avatar
muyangli committed
413
    kernels::quantize_w4a4_act(x, qact.act, qact.ascales);
Zhekai Zhang's avatar
Zhekai Zhang committed
414
415
416
417
418

#endif

    return qact;
}
muyangli's avatar
muyangli committed
419
420
421
422
423
424
425
426
427

GEMM_W8A8::GEMM_W8A8(int in_features, int out_features, bool bias, Tensor::ScalarType dtype, Device device) : 
    in_features(in_features), out_features(out_features), dtype(dtype)
{
    this->qweight = Tensor::allocate({out_features, in_features}, Tensor::INT8, device);
    this->wscales = Tensor::allocate({out_features}, dtype, device);
    this->bias = bias ? Tensor::allocate({out_features}, dtype, device, true) : Tensor{};

    registerParams
muyangli's avatar
muyangli committed
428
        (qweight, "qweight", ParamFlags::LazyLoad)
muyangli's avatar
muyangli committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        (wscales, "wscales")
        (this->bias, "bias")
    ;
}

GEMM_W8A8::QuantizedActivation GEMM_W8A8::quantize(Tensor x, bool fuse_glu) {
    QuantizedActivation qact;
    auto qshape = x.shape;
    if (fuse_glu) {
        qshape[-1] /= 2;
    }
    qact.act = Tensor::allocate(qshape, Tensor::INT8, x.device());
    qact.ascales = Tensor::allocate({(int)x.numel() / x.shape[-1]}, this->dtype, x.device());

    debug("quantize.x", x);

    kernels::quantize_w8a8_act(x, qact.act, qact.ascales, fuse_glu);

    debug("quantize.qact", qact.act);
    debug("quantize.ascales", qact.ascales);

    return qact;
}

Tensor GEMM_W8A8::forward_quant(QuantizedActivation qact) {
    auto oshape = qact.act.shape;
    oshape[-1] = out_features;
    Tensor out = Tensor::allocate(oshape, this->dtype, qact.act.device());
    kernels::gemm_w8a8(qact.act, this->qweight, out, qact.ascales, this->wscales, this->bias);

    debug("gemm.out", out);
    return out;
}

DWCONV::DWCONV(int in_features, bool use_bias, Tensor::ScalarType dtype, Device device) : 
    in_features(in_features)
{
    this->weight = Tensor::allocate({in_features, 3, 3, 1}, dtype, device);
    this->bias = use_bias ? Tensor::allocate({in_features}, dtype, device) : Tensor{};

    registerParams
        (this->weight, "weight")
        (this->bias, "bias")
    ;
}

Tensor DWCONV::forward(Tensor x) {
    return dwconv_f16(x, this->weight, {}, this->bias);
}