layernorm_kernels.cu 7.29 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include "layernorm_kernels_impl.cuh"
#include "dispatch_utils.h"

void rms_norm(Tensor &out,    // [..., hidden_size]
              Tensor &input,  // [..., hidden_size]
              Tensor &weight, // [hidden_size]
              float epsilon,
              bool use_quant) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;
  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 1024));
  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
    if (use_quant) {
      vllm::rms_norm_kernel<scalar_t, int8_t, true><<<grid, block, 0, stream>>>(
        out.data_ptr<int8_t>(), input.data_ptr<scalar_t>(),
        weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
    } else {
      vllm::rms_norm_kernel<scalar_t, scalar_t, false><<<grid, block, 0, stream>>>(
        out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
        weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
    }
  });
}

void layernorm_general(Tensor out, Tensor input, Tensor weight, Tensor bias, float epsilon) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;
  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 256));
  block.x = 32 * ((block.x + 31) / 32);

  size_t size_shmem = input.scalar_size() * hidden_size;
  
  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "generalLayerNorm", [&] {
    using T = typename packed_as<scalar_t, 2>::type;
    vllm::generalLayerNorm<T, half, true><<<grid, block, size_shmem, stream>>>(
        reinterpret_cast<T*>(input.data_ptr<scalar_t>()), 
        weight.valid() ? reinterpret_cast<T*>(weight.data_ptr<scalar_t>()) : nullptr, 
        bias.valid() ? reinterpret_cast<T*>(bias.data_ptr<scalar_t>()) : nullptr,
        reinterpret_cast<T*>(out.data_ptr<scalar_t>()), 
        epsilon, num_tokens, hidden_size, nullptr, nullptr, nullptr, true
      );
  });
}

void rms_norm_general(Tensor &out,    // [..., hidden_size]
              Tensor &input,  // [..., hidden_size]
              Tensor &weight, // [hidden_size]
              Tensor &scaling, // [tokens] or [1]
              float epsilon,
              bool use_per_token_quant) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;
  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 1024));
  block.x = 32 * ((block.x + 31) / 32);
  
  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "generalLayerNorm", [&] {
    using T = scalar_t;
    if (use_per_token_quant) {
      // per-token
      vllm::generalLayerNorm<T, half><<<grid, block, 0, stream>>>(
        reinterpret_cast<T*>(input.data_ptr<scalar_t>()), 
        reinterpret_cast<T*>(weight.data_ptr<scalar_t>()), nullptr,
        nullptr, epsilon, num_tokens, hidden_size, nullptr, scaling.data_ptr<half>(),
        out.data_ptr<int8_t>(), false
      );
      // input, gamma, beta, normed_output, eps, tokens, hidden_dim, per_tensor_scale, per_token_scale
      // normed_output_quant, use_shmem
        // out.data_ptr<int8_t>(), input.data_ptr<scalar_t>(),
        // weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
    } else {
      // per-tensor
      vllm::generalLayerNorm<T, half><<<grid, block, 0, stream>>>(
        reinterpret_cast<T*>(input.data_ptr<scalar_t>()), 
        reinterpret_cast<T*>(weight.data_ptr<scalar_t>()), nullptr,
        nullptr, epsilon, num_tokens, hidden_size, scaling.data_ptr<half>(), nullptr,
        out.data_ptr<int8_t>(), false
      );
    }
  });
}

void rms_norm_general_fuse_sum(Tensor &out,    // [..., hidden_size]
              Tensor &input,  // [..., hidden_size]
              Tensor &weight, // [hidden_size]
              Tensor &input_sum, // [tokens] or [1]
              Tensor &scaling, // [tokens] or [1]
              float epsilon,
              bool use_per_token_quant) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;
  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 1024));
  block.x = 32 * ((block.x + 31) / 32);
  
  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "generalLayerNorm_fuse_sum", [&] {
    using T = scalar_t;
    if (use_per_token_quant) {
      // per-token
      vllm::generalLayerNorm_fuse_sum<T, half><<<grid, block, 0, stream>>>(
        reinterpret_cast<T*>(input.data_ptr<scalar_t>()), 
        reinterpret_cast<T*>(weight.data_ptr<scalar_t>()), nullptr,
        nullptr, epsilon, num_tokens, hidden_size, input_sum.data_ptr<half>(), nullptr, scaling.data_ptr<half>(),
        out.data_ptr<int8_t>(), false
      );
      // input, gamma, beta, normed_output, eps, tokens, hidden_dim, per_tensor_scale, per_token_scale
      // normed_output_quant, use_shmem
        // out.data_ptr<int8_t>(), input.data_ptr<scalar_t>(),
        // weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
    } else {
      // per-tensor
      // Rasing error here
      // Not implemented per-tensor input_sum
      assert(false);
      
      vllm::generalLayerNorm_fuse_sum<T, half><<<grid, block, 0, stream>>>(
        reinterpret_cast<T*>(input.data_ptr<scalar_t>()), 
        reinterpret_cast<T*>(weight.data_ptr<scalar_t>()), nullptr,
        nullptr, epsilon, num_tokens, hidden_size, nullptr, scaling.data_ptr<half>(), nullptr,
        out.data_ptr<int8_t>(), false
      );
    }
  });
}



void invoke_dequant_add_residual_rms_norm_quant(
    Tensor &out,      // [..., hidden_size]
    Tensor &input,    // [..., hidden_size]
    Tensor &residual, // [..., hidden_size]
    Tensor &gamma,    // [hidden_size]
    half scale,
    float epsilon) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;
  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 1024));
  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(
      residual.scalar_type(), "dequant_add_residual_rms_norm_quant_kernel",
      [&] {
          vllm::dequant_add_residual_rms_norm_quant_kernel<scalar_t, half, false>
            <<<grid, block, 0, stream>>>(
                input.data_ptr<int32_t>(), residual.data_ptr<scalar_t>(),
                out.data_ptr<int8_t>(), gamma.data_ptr<scalar_t>(), epsilon,
                scale, num_tokens, hidden_size);
      });
}

void invoke_dequant_add_residual_rms_norm_quant(
    Tensor &out,      // [..., hidden_size]
    Tensor &input,    // [..., hidden_size]
    Tensor &residual, // [..., hidden_size]
    Tensor &gamma,    // [hidden_size]
    Tensor &scale,    // [num_tokens]
    float epsilon) {
  int hidden_size = input.size(-1);
  int num_tokens = input.numel() / hidden_size;

  dim3 grid(num_tokens);
  dim3 block(std::min(hidden_size, 1024));

  const cudaStream_t stream = getCurrentCUDAStream();
  VLLM_DISPATCH_FLOATING_TYPES(
      residual.scalar_type(), "dequant_add_residual_rms_norm_quant_kernel",
      [&] {
          vllm::dequant_add_residual_rms_norm_quant_kernel<scalar_t, half*, true>
            <<<grid, block, 0, stream>>>(
                input.data_ptr<int32_t>(), residual.data_ptr<scalar_t>(),
                out.data_ptr<int8_t>(), gamma.data_ptr<scalar_t>(), epsilon,
                scale.data_ptr<half>(), num_tokens, hidden_size);
      });
}