utils.py 10.8 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
import os

import torch
4
5
6
7
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline, FluxFillPipeline, FluxPipeline, FluxPriorReduxPipeline
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
muyangli's avatar
muyangli committed
8
9
from tqdm import tqdm

10
11
12
13
14
import nunchaku
from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.lora.flux.compose import compose_lora
from ..data import download_hf_dataset, get_dataset
from ..utils import already_generate, compute_lpips, hash_str_to_int
muyangli's avatar
muyangli committed
15

16
17
18
19
20
21
22
23
ORIGINAL_REPO_MAP = {
    "flux.1-schnell": "black-forest-labs/FLUX.1-schnell",
    "flux.1-dev": "black-forest-labs/FLUX.1-dev",
    "shuttle-jaguar": "shuttleai/shuttle-jaguar",
    "flux.1-canny-dev": "black-forest-labs/FLUX.1-Canny-dev",
    "flux.1-depth-dev": "black-forest-labs/FLUX.1-Depth-dev",
    "flux.1-fill-dev": "black-forest-labs/FLUX.1-Fill-dev",
}
muyangli's avatar
muyangli committed
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
NUNCHAKU_REPO_PATTERN_MAP = {
    "flux.1-schnell": "mit-han-lab/svdq-{precision}-flux.1-schnell",
    "flux.1-dev": "mit-han-lab/svdq-{precision}-flux.1-dev",
    "shuttle-jaguar": "mit-han-lab/svdq-{precision}-shuttle-jaguar",
    "flux.1-canny-dev": "mit-han-lab/svdq-{precision}-flux.1-canny-dev",
    "flux.1-depth-dev": "mit-han-lab/svdq-{precision}-flux.1-depth-dev",
    "flux.1-fill-dev": "mit-han-lab/svdq-{precision}-flux.1-fill-dev",
}

LORA_PATH_MAP = {
    "hypersd8": "ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors",
    "turbo8": "alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors",
    "realism": "XLabs-AI/flux-RealismLora/lora.safetensors",
    "ghibsky": "aleksa-codes/flux-ghibsky-illustration/lora.safetensors",
    "anime": "alvdansen/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors",
    "sketch": "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch/FLUX-dev-lora-children-simple-sketch.safetensors",
    "yarn": "linoyts/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors",
    "haunted_linework": "alvdansen/haunted_linework_flux/hauntedlinework_flux_araminta_k.safetensors",
    "canny": "black-forest-labs/FLUX.1-Canny-dev-lora/flux1-canny-dev-lora.safetensors",
    "depth": "black-forest-labs/FLUX.1-Depth-dev-lora/flux1-depth-dev-lora.safetensors",
}


def run_pipeline(dataset, task: str, pipeline: FluxPipeline, save_dir: str, forward_kwargs: dict = {}):
muyangli's avatar
muyangli committed
49
50
    os.makedirs(save_dir, exist_ok=True)
    pipeline.set_progress_bar_config(desc="Sampling", leave=False, dynamic_ncols=True, position=1)
51
52
53
54
55
56
57
58
59
60
61
62
63

    if task == "canny":
        processor = CannyDetector()
    elif task == "depth":
        processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
    elif task == "redux":
        processor = FluxPriorReduxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16
        ).to("cuda")
    else:
        assert task in ["t2i", "fill"]
        processor = None

muyangli's avatar
muyangli committed
64
65
66
    for row in tqdm(dataset):
        filename = row["filename"]
        prompt = row["prompt"]
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

        _forward_kwargs = {k: v for k, v in forward_kwargs.items()}

        if task == "canny":
            assert forward_kwargs.get("height", 1024) == 1024
            assert forward_kwargs.get("width", 1024) == 1024
            control_image = load_image(row["canny_image_path"])
            control_image = processor(
                control_image,
                low_threshold=50,
                high_threshold=200,
                detect_resolution=1024,
                image_resolution=1024,
            )
            _forward_kwargs["control_image"] = control_image
        elif task == "depth":
            control_image = load_image(row["depth_image_path"])
            control_image = processor(control_image)[0].convert("RGB")
            _forward_kwargs["control_image"] = control_image
        elif task == "fill":
            image = load_image(row["image_path"])
            mask_image = load_image(row["mask_image_path"])
            _forward_kwargs["image"] = image
            _forward_kwargs["mask_image"] = mask_image
        elif task == "redux":
            image = load_image(row["image_path"])
            _forward_kwargs.update(processor(image))

muyangli's avatar
muyangli committed
95
        seed = hash_str_to_int(filename)
96
97
98
99
        if task == "redux":
            image = pipeline(generator=torch.Generator().manual_seed(seed), **_forward_kwargs).images[0]
        else:
            image = pipeline(prompt, generator=torch.Generator().manual_seed(seed), **_forward_kwargs).images[0]
muyangli's avatar
muyangli committed
100
        image.save(os.path.join(save_dir, f"{filename}.png"))
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        torch.cuda.empty_cache()


def run_test(
    precision: str = "int4",
    model_name: str = "flux.1-schnell",
    dataset_name: str = "MJHQ",
    task: str = "t2i",
    dtype: str | torch.dtype = torch.bfloat16,  # the full precision dtype
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 4,
    guidance_scale: float = 3.5,
    use_qencoder: bool = False,
    attention_impl: str = "flashattn2",  # "flashattn2" or "nunchaku-fp16"
    cpu_offload: bool = False,
    cache_threshold: float = 0,
    lora_names: str | list[str] | None = None,
    lora_strengths: float | list[float] = 1.0,
    max_dataset_size: int = 20,
    i2f_mode: str | None = None,
    expected_lpips: float = 0.5,
):
    if isinstance(dtype, str):
        dtype_str = dtype
        if dtype == "bf16":
            dtype = torch.bfloat16
        else:
            assert dtype == "fp16"
            dtype = torch.float16
    else:
        if dtype == torch.bfloat16:
            dtype_str = "bf16"
        else:
            assert dtype == torch.float16
            dtype_str = "fp16"

    dataset = get_dataset(name=dataset_name, max_dataset_size=max_dataset_size)
    model_id_16bit = ORIGINAL_REPO_MAP[model_name]

    folder_name = f"w{width}h{height}t{num_inference_steps}g{guidance_scale}"

    if lora_names is None:
        lora_names = []
    elif isinstance(lora_names, str):
        lora_names = [lora_names]

    if len(lora_names) > 0:
        if isinstance(lora_strengths, (int, float)):
            lora_strengths = [lora_strengths]
        assert len(lora_names) == len(lora_strengths)

        for lora_name, lora_strength in zip(lora_names, lora_strengths):
            folder_name += f"-{lora_name}_{lora_strength}"

    if not os.path.exists(os.path.join("test_results", "ref")):
        ref_root = download_hf_dataset(local_dir=os.path.join("test_results", "ref"))
    else:
        ref_root = os.path.join("test_results", "ref")
    save_dir_16bit = os.path.join(ref_root, dtype_str, model_name, folder_name)

    if task in ["t2i", "redux"]:
        pipeline_cls = FluxPipeline
    elif task in ["canny", "depth"]:
        pipeline_cls = FluxControlPipeline
    elif task == "fill":
        pipeline_cls = FluxFillPipeline
    else:
        raise NotImplementedError(f"Unknown task {task}!")

    if not already_generate(save_dir_16bit, max_dataset_size):
        pipeline_init_kwargs = {"text_encoder": None, "text_encoder2": None} if task == "redux" else {}
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
        pipeline = pipeline.to("cuda")

        if len(lora_names) > 0:
            for i, (lora_name, lora_strength) in enumerate(zip(lora_names, lora_strengths)):
                lora_path = LORA_PATH_MAP[lora_name]
                pipeline.load_lora_weights(
                    os.path.dirname(lora_path), weight_name=os.path.basename(lora_path), adapter_name=f"lora_{i}"
                )
            pipeline.set_adapters([f"lora_{i}" for i in range(len(lora_names))], lora_strengths)

        run_pipeline(
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_16bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()

    precision_str = precision
    if use_qencoder:
        precision_str += "-qe"
    if attention_impl == "flashattn2":
        precision_str += "-fa2"
    else:
        assert attention_impl == "nunchaku-fp16"
        precision_str += "-nfp16"
    if cpu_offload:
        precision_str += "-co"
    if cache_threshold > 0:
        precision_str += f"-cache{cache_threshold}"
    if i2f_mode is not None:
        precision_str += f"-i2f{i2f_mode}"

    save_dir_4bit = os.path.join("test_results", dtype_str, precision_str, model_name, folder_name)
    if not already_generate(save_dir_4bit, max_dataset_size):
        pipeline_init_kwargs = {}
        model_id_4bit = NUNCHAKU_REPO_PATTERN_MAP[model_name].format(precision=precision)

        if i2f_mode is not None:
            nunchaku._C.utils.set_faster_i2f_mode(i2f_mode)

        transformer = NunchakuFluxTransformer2dModel.from_pretrained(
            model_id_4bit, offload=cpu_offload, torch_dtype=dtype
        )
        transformer.set_attention_impl(attention_impl)

        if len(lora_names) > 0:
            if len(lora_names) == 1:  # directly load the lora
                lora_path = LORA_PATH_MAP[lora_names[0]]
                lora_strength = lora_strengths[0]
                transformer.update_lora_params(lora_path)
                transformer.set_lora_strength(lora_strength)
            else:
                composed_lora = compose_lora(
                    [
                        (LORA_PATH_MAP[lora_name], lora_strength)
                        for lora_name, lora_strength in zip(lora_names, lora_strengths)
                    ]
                )
                transformer.update_lora_params(composed_lora)

        pipeline_init_kwargs["transformer"] = transformer
        if task == "redux":
            pipeline_init_kwargs.update({"text_encoder": None, "text_encoder_2": None})
        elif use_qencoder:
            text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
            pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
        if cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        else:
            pipeline = pipeline.to("cuda")
        run_pipeline(
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_4bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del transformer
        del pipeline
        # release the gpu memory
        torch.cuda.empty_cache()
    lpips = compute_lpips(save_dir_16bit, save_dir_4bit)
    print(f"lpips: {lpips}")
    assert lpips < expected_lpips * 1.05