__init__.py 2.3 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
4
5
import os
import random

import datasets
import yaml
6
7
from huggingface_hub import snapshot_download

muyangli's avatar
muyangli committed
8
9
from nunchaku.utils import fetch_or_download

10
11
12
13
14
15
__all__ = ["get_dataset", "load_dataset_yaml", "download_hf_dataset"]


def download_hf_dataset(repo_id: str = "mit-han-lab/nunchaku-test", local_dir: str | None = None) -> str:
    path = snapshot_download(repo_id=repo_id, repo_type="dataset", local_dir=local_dir)
    return path
muyangli's avatar
muyangli committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def load_dataset_yaml(meta_path: str, max_dataset_size: int = -1, repeat: int = 4) -> dict:
    meta = yaml.safe_load(open(meta_path, "r"))
    names = list(meta.keys())
    if max_dataset_size > 0:
        random.Random(0).shuffle(names)
        names = names[:max_dataset_size]
        names = sorted(names)

    ret = {"filename": [], "prompt": [], "meta_path": []}
    idx = 0
    for name in names:
        prompt = meta[name]
        for j in range(repeat):
            ret["filename"].append(f"{name}-{j}")
            ret["prompt"].append(prompt)
            ret["meta_path"].append(meta_path)
            idx += 1
    return ret


def get_dataset(
    name: str,
    config_name: str | None = None,
    split: str = "train",
    return_gt: bool = False,
    max_dataset_size: int = 5000,
) -> datasets.Dataset:
    prefix = os.path.dirname(__file__)
    kwargs = {
        "name": config_name,
        "split": split,
        "trust_remote_code": True,
        "token": True,
        "max_dataset_size": max_dataset_size,
    }
    path = os.path.join(prefix, f"{name}")
    if name == "MJHQ":
        dataset = datasets.load_dataset(path, return_gt=return_gt, **kwargs)
56
57
58
    elif name == "MJHQ-control":
        kwargs["name"] = "MJHQ-control"
        dataset = datasets.load_dataset(os.path.join(prefix, "MJHQ"), return_gt=return_gt, **kwargs)
muyangli's avatar
muyangli committed
59
60
61
    else:
        dataset = datasets.Dataset.from_dict(
            load_dataset_yaml(
62
                fetch_or_download(f"mit-han-lab/svdquant-datasets/{name}.yaml", repo_type="dataset"),
muyangli's avatar
muyangli committed
63
64
65
66
67
68
69
70
71
72
73
74
                max_dataset_size=max_dataset_size,
                repeat=1,
            ),
            features=datasets.Features(
                {
                    "filename": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "meta_path": datasets.Value("string"),
                }
            ),
        )
    return dataset