gemm_w4a4.cuh 42.7 KB
Newer Older
muyangli's avatar
muyangli committed
1
2
3
#pragma once

#include "gemm_base.cuh"
sxtyzhangzk's avatar
sxtyzhangzk committed
4
#include "lora.cuh"
5
// #include "gemm_w4a4_block.cuh"
muyangli's avatar
muyangli committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

namespace nunchaku::kernels {

template<typename Config>
class GEMM_W4A4;

#ifndef __INTELLISENSE__
template<typename Config>
class GEMM_W4A4 : public GEMMBase<Config> {
#else
template<>
class GEMM_W4A4<GEMMConfig_W4A4_FP16> : public GEMMBase<GEMMConfig_W4A4_FP16> {
    using Config = GEMMConfig_W4A4_FP16;
#endif

public:
    IMPORT_GEMM_BASE(Config);

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
public:
    // micro-scales for FP4 MMA
    // each uint32_t is a 4*32 matrix of scales (for MMA of 64*32)

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 1200
    static constexpr bool FP4_AVAILABLE = true;
#else
    static constexpr bool FP4_AVAILABLE = false;
#endif

    __device__ __forceinline__ 
    static void trap_no_fp4() {
        if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
            printf("FP4 is not available on this device\n");
        }
        __syncthreads();
        __nanosleep(1000000);
        __trap();
    }

    static_assert(WARP_N % 32 == 0);
    static_assert(WARP_M % 32 == 0);

    static constexpr int WMSCALES_PACK_SIZE = clamp(WARP_N / 32, 1, 4);
    static constexpr int WMSCALES_NUM_PACKS = ceilDiv(WARP_N / 32, WMSCALES_PACK_SIZE);
    static constexpr int WMSCALES_VALID_LANES = WARP_SIZE;

    static constexpr int AMSCALES_PACK_SIZE = clamp(WARP_M / 32, 1, 4);
    static constexpr int AMSCALES_NUM_PACKS = ceilDiv(WARP_M / 32, AMSCALES_PACK_SIZE);
    static constexpr int AMSCALES_VALID_LANES = WARP_SIZE;

    struct packed_wmscale_t {
        uint32_t data[WMSCALES_PACK_SIZE];
    };
    struct packed_amscale_t {
        uint32_t data[AMSCALES_PACK_SIZE];
    };
    using amscale_warp = std::array<packed_amscale_t, AMSCALES_NUM_PACKS>;
    using wmscale_warp = std::array<packed_wmscale_t, WMSCALES_NUM_PACKS>;

    // amscales: [M / BLOCK_M, K / group size, NUM_WARPS, AMSCALES_NUM_PACKS, WARP_SIZE] of packed_amscale_t
    __device__ __forceinline__ 
    static void load_amscale(const packed_amscale_t *ptr, int group, amscale_warp &out, bool pred) {
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;
    #pragma unroll
        for (int i = 0; i < AMSCALES_NUM_PACKS; i++) {
            out[i] = load_pred(&ptr[(group * NUM_WARPS + warpId) * AMSCALES_NUM_PACKS * AMSCALES_VALID_LANES + i * AMSCALES_VALID_LANES + laneId], pred);
        }
    }
    // wmscales: [N / BLOCK_N, 1, K / group size, WMSCALES_NUM_PACKS, WMSCALES_VALID_LANES] of packed_wmscale_t
    __device__ __forceinline__
    static void load_wmscale(const packed_wmscale_t *ptr, int group, wmscale_warp &out, bool pred) {
        const int laneId = threadIdx.x % WARP_SIZE;
    #pragma unroll
        for (int i = 0; i < WMSCALES_NUM_PACKS; i++) {
            out[i] = load_pred(&ptr[(group * WMSCALES_NUM_PACKS + i) * WMSCALES_VALID_LANES + laneId], pred);
        }
    }

    __device__ __forceinline__
    static void quantize_w4a4_fp4_from_fpsum_warp(const packed_fpsum_t (&fpsum)[INSN_K / INSN_N], packed_act_t &output, uint32_t &output_scale, int ida) {

        constexpr int NUM_GROUPS = 4;
        static_assert(NUM_GROUPS == INSN_K / INSN_N);

        constexpr float QVALUE_MAX = 6.0f;
        constexpr float RECPI_QVALUE_MAX = 1 / QVALUE_MAX;
        constexpr float MSCALE_MAX = 448.0f;

        const int laneId = threadIdx.x % WARP_SIZE;

        // 0 for row 0-7; 1 for row 8-15
        // each half2_t represents a 8*8 matrix
        half2_t input[2][INSN_K / INSN_N * 2];
    #pragma unroll
        for (int i = 0; i < INSN_K / INSN_N; i++) {
            input[0][i * 2 + 0] = fpsum[i].data[0];
            input[0][i * 2 + 1] = fpsum[i].data[2];
            input[1][i * 2 + 0] = fpsum[i].data[1];
            input[1][i * 2 + 1] = fpsum[i].data[3];
        }
        
        auto maxabs = [](half2_t val) ALWAYSINLINE {
            val = __habs2(val);
            return __hmax(val.x, val.y);
        };

        // each half_t represents maxvalue in a 8*16 matrix
        half_t maxvalue[2][NUM_GROUPS];
    #pragma unroll
        for (int i = 0; i < NUM_GROUPS; i++) {
            maxvalue[0][i] = __hmax(maxabs(input[0][i * 2]), maxabs(input[0][i * 2 + 1]));
            maxvalue[1][i] = __hmax(maxabs(input[1][i * 2]), maxabs(input[1][i * 2 + 1]));
        }
    #pragma unroll
        for (int mask = 2; mask > 0; mask /= 2) {
    #pragma unroll
            for (int i = 0; i < NUM_GROUPS; i++) {
                maxvalue[0][i] = __hmax(maxvalue[0][i], __shfl_xor_sync(~0, maxvalue[0][i], mask));
                maxvalue[1][i] = __hmax(maxvalue[1][i], __shfl_xor_sync(~0, maxvalue[1][i], mask));
            }
        }
        // lane 0,1,2,3 / 4,5,6,7 / ...  should have identical maxvalue now

        float scale[2][NUM_GROUPS];
        float rscale[2][NUM_GROUPS];
    #pragma unroll
        for (int i = 0; i < NUM_GROUPS; i++) {
            scale[0][i]  = fminf(float(maxvalue[0][i]) * RECPI_QVALUE_MAX, MSCALE_MAX);
            scale[1][i]  = fminf(float(maxvalue[1][i]) * RECPI_QVALUE_MAX, MSCALE_MAX);
            // TODO: check whether (1 / scale) or (1 / fp8scale) is better
            rscale[0][i] = cuda_frcp(scale[0][i]);
            rscale[1][i] = cuda_frcp(scale[1][i]);
        }
        uint32_t fp8scale[2];
        fp8scale[0] = quantize_float4_fp8(make_float4(scale[0][0], scale[0][1], scale[0][2], scale[0][3]));
        fp8scale[1] = quantize_float4_fp8(make_float4(scale[1][0], scale[1][1], scale[1][2], scale[1][3]));

        /**
         * output_scale pack format: (ida=0)
         * lane 0 => row 0 if ida==0
         * lane 1 => row 8 if ida==0
         * lane 2 => row 0 if ida==1
         * lane 3 => row 8 if ida==1
         * ...
         * lane i => quad (i/4) => row (i/4+8*(i%2)) if (i%4/2==ida) => srclane i, index i%2
         */
        if (laneId % 4 / 2 == ida) {
            output_scale = (laneId % 2 == 0) ? fp8scale[0] : fp8scale[1];
        }
        
        
        uint32_t qpacks[2][INSN_K / INSN_M * 2];
    #pragma unroll
        for (int i = 0; i < INSN_K / INSN_M * 2; i++) {
    #pragma unroll
            for (int j = 0; j < 2; j++) {
                float2 fval = half22float2(input[j][i]) * make_float2(rscale[j][i / 2], rscale[j][i / 2]);
                qpacks[j][i] = quantize_float2_fp4(fval) << (laneId % 4 * 8);
            }
        }

        #pragma unroll
        for (int mask = 1; mask <= 2; mask *= 2) {
    #pragma unroll
            for (int i = 0; i < INSN_K / INSN_M * 2; i++) {
    #pragma unroll
                for (int j = 0; j < 2; j++) {
                    qpacks[j][i] |= __shfl_xor_sync(~0, qpacks[j][i], mask);
                }
            }
        }
        // lane 0,1,2,3 / 4,5,6,7 / ...  should have identical qpacks now
    #pragma unroll
        for (int i = 0; i < 4; i++) {
            if (laneId % 4 == i) {
                output.x = qpacks[0][0 + i];
                output.y = qpacks[1][0 + i];
                output.z = qpacks[0][4 + i];
                output.w = qpacks[1][4 + i];
            }
        }
    }

    // m16n16k64 MMA
    // ida, idb in {0, 1}
    __device__ __forceinline__
    static packed_f32psum_t mma_fp4(packed_act_t act, packed_wgt_t wgt, packed_f32psum_t psum, uint32_t amscale, uint32_t wmscale, int ida, int idb) {
        packed_f32psum_t out;
        asm volatile (
            "mma.sync.aligned.m16n8k64.row.col.kind::mxf4nvf4.block_scale.scale_vec::4X.f32.e2m1.e2m1.f32.ue4m3 "
            "{%0, %1, %2, %3}, "
            "{%4, %5, %6, %7}, "
            "{%8, %9}, "
            "{%10, %11, %12, %13}, "
            "{%14}, {%15, %16}, "
            "{%17}, {%18, %19};" 
            :
            "=f"(out.data[0]), "=f"(out.data[1]), "=f"(out.data[2]), "=f"(out.data[3])
            : 
            "r"(act.x), "r"(act.y), "r"(act.z), "r"(act.w),
            "r"(wgt.x), "r"(wgt.y),
            "f"(psum.data[0]), "f"(psum.data[1]), "f"(psum.data[2]), "f"(psum.data[3]),
            "r"(amscale), "n"(0), "h"((short)ida),
            "r"(wmscale), "n"(0), "h"((short)(idb * 2))
        );
        asm volatile (
            "mma.sync.aligned.m16n8k64.row.col.kind::mxf4nvf4.block_scale.scale_vec::4X.f32.e2m1.e2m1.f32.ue4m3 "
            "{%0, %1, %2, %3}, "
            "{%4, %5, %6, %7}, "
            "{%8, %9}, "
            "{%10, %11, %12, %13}, "
            "{%14}, {%15, %16}, "
            "{%17}, {%18, %19};" 
            :
            "=f"(out.data[4]), "=f"(out.data[5]), "=f"(out.data[6]), "=f"(out.data[7])
            : 
            "r"(act.x), "r"(act.y), "r"(act.z), "r"(act.w),
            "r"(wgt.z), "r"(wgt.w),
            "f"(psum.data[4]), "f"(psum.data[5]), "f"(psum.data[6]), "f"(psum.data[7]),
            "r"(amscale), "n"(0), "h"((short)ida),
            "r"(wmscale), "n"(0), "h"((short)(idb * 2 + 1))
        );
        return out;
    }

    __device__ __forceinline__
    static void compute_fp4(act_warp A, wgt_warp W, amscale_warp amscale, wmscale_warp wmscale, f32psum_warp &psum) {
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

    #pragma unroll
        for (int j = 0; j < WARP_N_TILES; j++) {
    #pragma unroll
            for (int i = 0; i < WARP_M_TILES; i++) {
                psum[i * WARP_N_TILES + j] = mma_fp4(
                    A[i], W[j], psum[i * WARP_N_TILES + j], 
                    amscale[i / 2 / AMSCALES_PACK_SIZE].data[i / 2 % AMSCALES_PACK_SIZE], 
                    wmscale[j / 2 / WMSCALES_PACK_SIZE].data[j / 2 % WMSCALES_PACK_SIZE], 
                    i % 2, j % 2    
                );
            }
        }
    }

    template<typename Epilogue, bool USE_ALPHA>
    __device__ __forceinline__
    static void gemm_w4a4_fp4_block(
        const BlockInfo binfo,
        const packed_act_t *act,
        const packed_wgt_t *wgt,
        const packed_amscale_t *ascales,
        const packed_wmscale_t *wscales,
        float alpha,  // per-tensor scale of weight
        int M, int N, int K, 
sxtyzhangzk's avatar
sxtyzhangzk committed
260
        const Epilogue::Arguments &epilogueArgs,
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        bool alwaysfalse)
    {
        constexpr int NUM_STAGES = 2;

        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

        act_warp A[NUM_STAGES];  // 8 * 2
        wgt_warp W[NUM_STAGES];  // 32 * 2
        amscale_warp amscale[NUM_STAGES];  // 1 * 2
        wmscale_warp wmscale[NUM_STAGES];  // 4 * 2
        f32psum_warp fpsum;   // 128

        for (int k = 0; k < NUM_STAGES - 1; k++) {
            load_act(act, k, K, A[k], true);
            load_wgt(wgt, k, K, W[k], true);
            load_amscale(ascales, k, amscale[k], true);
            load_wmscale(wscales, k, wmscale[k], true);
        }

    #pragma unroll
        for (auto &pack : fpsum) {
    #pragma unroll
            for (int i = 0; i < 8; i++) {
                pack.data[i] = 0;
            }
        }
        
        int dummy = 0;

        for (int k1 = 0; k1 < K / WARP_K; k1 += NUM_STAGES) {
    #pragma unroll
            for (int k2 = 0; k2 < NUM_STAGES; k2++) {
                int nextk = k1 + k2 + NUM_STAGES - 1;
                int idx = (k2 + NUM_STAGES - 1) % NUM_STAGES;
                bool pred = nextk < K / WARP_K;
                load_act(act, nextk, K, A[idx], pred);
                load_wgt(wgt, nextk, K, W[idx], pred);
                load_amscale(ascales, nextk, amscale[idx], pred);
                load_wmscale(wscales, nextk, wmscale[idx], pred);

                // __syncthreads();
                // if (alwaysfalse) {
                //     dummy = clock();
                // }

                compute_fp4(A[k2], W[k2], amscale[k2], wmscale[k2], fpsum);

                if (alwaysfalse) {
                    dummy = clock();
                }

                // asm volatile ("membar.cta;");
            }
        }

        unused_var(dummy, alwaysfalse);

        if constexpr (USE_ALPHA) {
    #pragma unroll
            for (auto &pack : fpsum) {
    #pragma unroll
                for (int i = 0; i < 8; i++) {
                    pack.data[i] *= alpha;
                }
            }
        }
    

        auto f16psum = packed_fp32_to_fp16(fpsum);

        CHECK_NAN(f16psum, "f16psum");

        Epilogue()(binfo, f16psum, M, N, K, epilogueArgs);
    }

    template<typename Epilogue, bool USE_ALPHA>
    struct gemm_w4a4_fp4_kernel {
339
        static constexpr int MIN_ARCH = 1200;
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        __device__
        void operator()(
            const packed_act_t *act,
            const packed_wgt_t *wgt,
            const packed_amscale_t *ascales,
            const packed_wmscale_t *wscales,
            float alpha,
            int M, int N, int K, 
            Epilogue::Arguments epilogueArgs,
            bool swapBlockXY,
            bool alwaysfalse)
        {
            BlockInfo binfo = {
                .bm = (int)blockIdx.x,
                .bn = (int)blockIdx.y,
                .numBlocksM = (int)gridDim.x,
                .numBlocksN = (int)gridDim.y,
            };

            if (swapBlockXY) {
                std::swap(binfo.bm, binfo.bn);
                std::swap(binfo.numBlocksM, binfo.numBlocksN);
            }

            const int bm = binfo.bm;
            const int bn = binfo.bn;

            if constexpr (FP4_AVAILABLE) {
                gemm_w4a4_fp4_block<Epilogue, USE_ALPHA>(
                    binfo,
                    act + bm * (K / WARP_K) * NUM_WARPS * WARP_M_TILES * WARP_SIZE,
                    wgt + bn * (K / WARP_K) * WARP_N_TILES * WARP_SIZE,
                    ascales + bm * (K / WARP_K) * NUM_WARPS * AMSCALES_NUM_PACKS * AMSCALES_VALID_LANES,
                    wscales + bn * (K / WARP_K) * WMSCALES_NUM_PACKS * WMSCALES_VALID_LANES,
                    alpha,
                    M, N, K,
                    epilogueArgs,
                    alwaysfalse
                );

            } else {
                trap_no_fp4();
            }

            
        }
    };

muyangli's avatar
muyangli committed
388
389
390
391
392
393
public:
    template<bool ACT_UNSIGNED>
    __device__ __forceinline__
    static packed_psum_t mma(packed_act_t act, packed_wgt_t wgt) {
        packed_psum_t psum;

394
395
396
397
398
399
400
401
402
403
        uint4 out1 = mma_m16n8kx_s32common<mma_helper::s4u4<ACT_UNSIGNED>, mma_helper::s4>(act, uint2(wgt.x, wgt.y), uint4(0, 0, 0, 0));
        uint4 out2 = mma_m16n8kx_s32common<mma_helper::s4u4<ACT_UNSIGNED>, mma_helper::s4>(act, uint2(wgt.z, wgt.w), uint4(0, 0, 0, 0));
        psum.data[0] = out1.x;
        psum.data[1] = out1.y;
        psum.data[2] = out1.z;
        psum.data[3] = out1.w;
        psum.data[4] = out2.x;
        psum.data[5] = out2.y;
        psum.data[6] = out2.z;
        psum.data[7] = out2.w;
muyangli's avatar
muyangli committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        
        return psum;
    }

    // template<bool si>
    template<bool use_unsigned>
    __device__ __forceinline__
    static void quantize_w4a4_from_fpsum_warp(const packed_fpsum_t (&fpsum)[INSN_K / INSN_N], packed_act_t &output, half_t *output_scale) {
        const int laneId = threadIdx.x % WARP_SIZE;

        constexpr float QVALUE_MAX_SIGNED = 7.0f;
        constexpr float QVALUE_MAX_UNSIGNED = 15.0f;
        constexpr float RECPI_QVALUE_MAX_SIGNED = 1 / QVALUE_MAX_SIGNED;
        constexpr float RECPI_QVALUE_MAX_UNSIGNED = 1 / QVALUE_MAX_UNSIGNED;

        constexpr float QVALUE_MAX = use_unsigned ? QVALUE_MAX_UNSIGNED : QVALUE_MAX_SIGNED;
        constexpr float RECPI_QVALUE_MAX = use_unsigned ? RECPI_QVALUE_MAX_UNSIGNED : RECPI_QVALUE_MAX_SIGNED;
        // constexpr int QUANTIZE_BITMASK = 0xf;

        // 0 for row 0-7; 1 for row 8-15
        half2_t input[2][INSN_K / INSN_N * 2];

    #pragma unroll
        for (int i = 0; i < INSN_K / INSN_N; i++) {
            input[0][i * 2 + 0] = fpsum[i].data[0];
            input[0][i * 2 + 1] = fpsum[i].data[2];
            input[1][i * 2 + 0] = fpsum[i].data[1];
            input[1][i * 2 + 1] = fpsum[i].data[3];
        }

        half_t maxvalue[2];
        maxvalue[0] = 0;
        maxvalue[1] = 0;
    #pragma unroll
        for (int i = 0; i < INSN_K / INSN_M * 2; i++) {
            half2_t abs0 = __habs2(input[0][i]);
            half2_t abs1 = __habs2(input[1][i]);
            maxvalue[0] = __hmax(maxvalue[0], __hmax(abs0.x, abs0.y));
            maxvalue[1] = __hmax(maxvalue[1], __hmax(abs1.x, abs1.y));
        }
    #pragma unroll
        for (int mask = 2; mask > 0; mask /= 2) {
            maxvalue[0] = __hmax(maxvalue[0], __shfl_xor_sync(~0, maxvalue[0], mask));
            maxvalue[1] = __hmax(maxvalue[1], __shfl_xor_sync(~0, maxvalue[1], mask));
        }
        maxvalue[0] = __shfl_sync(~0, maxvalue[0], laneId / 4 * 4);
        maxvalue[1] = __shfl_sync(~0, maxvalue[1], laneId / 4 * 4);

        float scale[2];
        // scale[0] = float(maxvalue[0]) / QVALUE_MAX;
        // scale[1] = float(maxvalue[1]) / QVALUE_MAX;
        scale[0] = float(maxvalue[0]) * RECPI_QVALUE_MAX;
        scale[1] = float(maxvalue[1]) * RECPI_QVALUE_MAX;
        if (laneId % 4 == 0) {
            output_scale[laneId / 4] = half_t(scale[0]);
            output_scale[laneId / 4 + 8] = half_t(scale[1]);
        }

        float rscale[2];
        // rscale[0] = QVALUE_MAX / float(maxvalue[0]);
        // rscale[1] = QVALUE_MAX / float(maxvalue[1]);
        rscale[0] = cuda_frcp(scale[0]);
        rscale[1] = cuda_frcp(scale[1]);

        uint32_t qpacks[2][INSN_K / INSN_M * 2];
    #pragma unroll
        for (int i = 0; i < INSN_K / INSN_M * 2; i++) {
    #pragma unroll
            for (int j = 0; j < 2; j++) {
                // half2_t hval = __hmul2(input[j][i], half2_t(rscale[j], rscale[j]));
                // float2 fval = half22float2(hval);
                float2 fval = half22float2(input[j][i]) * make_float2(rscale[j], rscale[j]);
                qpacks[j][i] = quantize_float2<4, use_unsigned>(fval) << (laneId % 4 * 8);
            }
        }
        
        // 2 * 8 * 2 = 32 instructions => 256 cycles
    #pragma unroll
        for (int mask = 1; mask <= 2; mask *= 2) {
    #pragma unroll
            for (int i = 0; i < INSN_K / INSN_M * 2; i++) {
    #pragma unroll
                for (int j = 0; j < 2; j++) {
                    qpacks[j][i] |= __shfl_xor_sync(~0, qpacks[j][i], mask);
                }
            }
        }
        // lane 0,1,2,3 / 4,5,6,7 / ...  should have identical qpacks now

    #pragma unroll
        for (int i = 0; i < 4; i++) {
            if (laneId % 4 == i) {
                output.x = qpacks[0][0 + i];
                output.y = qpacks[1][0 + i];
                output.z = qpacks[0][4 + i];
                output.w = qpacks[1][4 + i];
            }
        }
    }


    /**
     * each warp quantizes a INSN_M * INSN_K (16 * 64) matrix
     * input is per-warp (in global memory)
     * output is per-thread (in regs)
     * output_scale is per-warp (in shared memory)
     * shmem must be at least INSN_M * INSN_K * sizeof(element) (16 * 64 * 0.5 = 512 Bytes)
     * default to quantize activation, if quantize weight, input should be column-majored and output should be transposed ({x, y, z, w} = {x, z, y, w})
     */
    __device__ __forceinline__
    static void quantize_w4a4_warp(const half_t *input, int stride, packed_act_t &output, half_t *output_scale, void *shmem) {
        const int laneId = threadIdx.x % WARP_SIZE;

        constexpr int QUANTIZE_BITWIDTH = 4;
        constexpr int QVALUE_MAX = 7;   // 4 bit => [-8, 7]

        // 1 lane = 1 pack
        // 1 warp = 32 lanes = 32 packs = 1 packwarp
        // a pack is {a0, ..., a7} in figure https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=ex2#mma-16864-a
        // PACK_SIZE * 4 = INSN_K / 2
        constexpr int PACK_SIZE = INSN_K / 8;  // = 8 for 4bit
        constexpr int NUM_PACKS_PER_ROW = INSN_K / PACK_SIZE;
        constexpr int NUM_ROWS_PER_PACKWARP = PACK_SIZE * WARP_SIZE / INSN_K;
        constexpr int NUM_PACKWARPS = INSN_M / NUM_ROWS_PER_PACKWARP;
        using packed_input = std::array<half_t, PACK_SIZE>;

        packed_input packs[NUM_PACKWARPS];

        // load
    #pragma unroll
        for (int i = 0; i < NUM_PACKWARPS; i++) {
            int rowId = i * NUM_ROWS_PER_PACKWARP + laneId / NUM_PACKS_PER_ROW;
            int colId = laneId % NUM_PACKS_PER_ROW * PACK_SIZE;
            packs[i] = load(reinterpret_cast<const packed_input *>(input + rowId * stride + colId));
        }

        // find max
        half_t maxvalue[NUM_PACKWARPS];
    #pragma unroll
        for (int i = 0; i < NUM_PACKWARPS; i++) {
            maxvalue[i] =  __habs(packs[i][0]);
    #pragma unroll
            for (int j = 1; j < PACK_SIZE; j++) {
                
                maxvalue[i] = __hmax(maxvalue[i], __habs(packs[i][j]));
            }
        }

        // warp reduce (max)
    #pragma unroll
        for (int mask = NUM_PACKS_PER_ROW / 2; mask > 0; mask /= 2) {
    #pragma unroll
            for (int i = 0; i < NUM_PACKWARPS; i++) {
                maxvalue[i] = __hmax(maxvalue[i], __shfl_xor_sync(~0, maxvalue[i], mask));
            }
        }

        // broadcast (max)
    #pragma unroll
        for (int i = 0; i < NUM_PACKWARPS; i++) {
            maxvalue[i] = __shfl_sync(~0, maxvalue[i], laneId / NUM_PACKS_PER_ROW * NUM_PACKS_PER_ROW);
        }

        // quantize
        using matrix_t = uint32_t[INSN_M][NUM_PACKS_PER_ROW];
        matrix_t &mat = *reinterpret_cast<matrix_t *>(shmem);
    #pragma unroll
        for (int i = 0; i < NUM_PACKWARPS; i++) {
            half_t scale  = maxvalue[i] / half_t(QVALUE_MAX);
            half_t rscale = half_t(QVALUE_MAX) / maxvalue[i];
            if (laneId % NUM_PACKS_PER_ROW == 0) {
                output_scale[i * NUM_ROWS_PER_PACKWARP + laneId / NUM_PACKS_PER_ROW] = scale;
            }

            uint32_t qpack = 0;
    // #pragma unroll
    //         for (int j = 0; j < PACK_SIZE; j++) {
    //             int intvalue = __half2int_rn(packs[i][j] / scale);
    //             intvalue = clamp(intvalue, -QVALUE_MAX, QVALUE_MAX);
    //             qpack |= (intvalue & QUANTIZE_BITMASK) << (QUANTIZE_BITWIDTH * j);
    //         }
    #pragma unroll
            for (int j = 0; j < PACK_SIZE; j += 2) {
                half2_t hval = __hmul2(half2_t(rscale, rscale), half2_t(packs[i][j], packs[i][j + 1]));
                qpack |= quantize_float2<QUANTIZE_BITWIDTH, false>(half22float2(hval)) << (j * QUANTIZE_BITWIDTH);
            }
            mat[i * NUM_ROWS_PER_PACKWARP + laneId / NUM_PACKS_PER_ROW][laneId % NUM_PACKS_PER_ROW] = qpack;
        }
        __syncwarp();
        
        // convert to imma format
        int row = laneId % 16;
        int col = laneId / 16 * 4;
        ldmatrix(&mat[row][col], output);

        __syncwarp();
    }

    // each thread block (1 warp) quantize WARP_M * WARP_K tile (32 * 64)
    struct quantize_w4a4_act_kernel {
604
        static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
muyangli's avatar
muyangli committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        __device__ 
        void operator()(const half_t *input, packed_act_t *output, packed_ascale_t *oscales, int K) {
            const int laneId = threadIdx.x % WARP_SIZE;

            const int bm = blockIdx.x / (BLOCK_M / WARP_M);
            const int bk = blockIdx.y;
            const int warpId = blockIdx.x % (BLOCK_M / WARP_M);

            const int row = blockIdx.x * WARP_M;
            const int col = blockIdx.y * WARP_K;

            __shared__ alignas(128) half_t oscale_shmem[WARP_M];
            __shared__ alignas(128) uint8_t tmp_shmem[INSN_M * INSN_K / 2];

            for (int tileId = 0; tileId < WARP_M_TILES; tileId++) {
                packed_act_t tmpout;

                quantize_w4a4_warp(
                    input + (row + tileId * INSN_M) * K + col,
                    K,
                    tmpout,
                    oscale_shmem + tileId * INSN_M,
                    tmp_shmem
                );

                store(&output[(((bm * K / WARP_K + bk) * NUM_WARPS + warpId) * WARP_M_TILES + tileId) * WARP_SIZE + laneId], tmpout);
            }

            // if (threadIdx.x == 0) {
            //     printf("Block (%d, %d) => offset = %d\n", blockIdx.x, blockIdx.y, (bm * K / WARP_K + bk) * NUM_WARPS + warpId);
            // }
            pack_ascales(oscale_shmem, &oscales[((bm * K / WARP_K + bk) * NUM_WARPS + warpId) * ASCALES_NUM_PACKS * ASCALES_VALID_LANES]);
        }
    };
    
    // each thread block (1 warp) quantize WARP_N * WARP_K tile (128 * 64)
    struct quantize_w4a4_wgt_kernel {
642
        static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
muyangli's avatar
muyangli committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        __device__ 
        void operator()(const half_t *input, packed_wgt_t *output, packed_wscale_t *oscales, int K) {
            const int laneId = threadIdx.x % WARP_SIZE;

            const int bn = blockIdx.x / (BLOCK_N / WARP_N);
            const int bk = blockIdx.y;

            const int col = blockIdx.x * WARP_N;
            const int row = blockIdx.y * WARP_K;

            __shared__ alignas(128) half_t oscale_shmem[WARP_N];
            __shared__ alignas(128) uint8_t tmp_shmem[INSN_M * INSN_K / 2];

            for (int tileId = 0; tileId < WARP_N_TILES; tileId++) {
                packed_wgt_t tmpout;

                quantize_w4a4_warp(
                    input + (col + tileId * INSN_N) * K + row,
                    K,
                    tmpout,
                    oscale_shmem + tileId * INSN_N,
                    tmp_shmem
                );

                std::swap(tmpout.y, tmpout.z);

                store(&output[((bn * K / WARP_K + bk) * WARP_N_TILES + tileId) * WARP_SIZE + laneId], tmpout);
            }

            pack_wscales(oscale_shmem, &oscales[(bn * K / WARP_K + bk) * WSCALES_NUM_PACKS * WSCALES_VALID_LANES]);
        }
    };

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    struct i2f_sm80 {
        __device__ __forceinline__
        static float2 int2float2(int x, int y) {
            return make_float2(int2float_fast(x), int2float_fast(y));
        }

        __device__ __forceinline__
        static half2_t int2half2(int x, int y) {
            return float22half2<half2_t>(int2float2(x, y));
        }
    };

    struct i2f_sm75 {
        __device__ __forceinline__
        static float2 int2float2(int x, int y) {
            return make_float2(int2float_fast(x), int2float_fast(y));
        }

        __device__ __forceinline__
        static half2_t int2half2(int x, int y) {
            return half2(__int2half_rn(x), __int2half_rn(y));
        }
    };

    struct i2f_sm75_fast {
        __device__ __forceinline__
        static float2 int2float2(int x, int y) {
            return make_float2(int2float_fast(x), int2float_fast(y));
        }

        __device__ __forceinline__
        static half2_t int2half2(int x, int y) {
            return int2half2_fast_512(x, y);
        }
    };

muyangli's avatar
muyangli committed
712
713
714
    template<bool ACT_UNSIGNED, typename T>
    __device__ __forceinline__
    static void compute(act_warp A, wgt_warp W, ascale_warp ascale, wscale_warp wscale, T &fpsum) {
715
716
717
718
719
720
721
722
723
    #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 800
        using int2half2 = i2f_sm80;
    #elif defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
        using int2half2 = std::conditional_t<Config::FASTER_I2F, i2f_sm75_fast, i2f_sm75>;;
    #else
        using int2half2 = Base::i2f_normal;
    #endif

        Base::template apply_scales<int2half2>([&](int i, int j) {
muyangli's avatar
muyangli committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
            return mma<ACT_UNSIGNED>(A[i], W[j]);
        }, ascale, wscale, fpsum);
    }

    __device__ __forceinline__
    static void checkNan(fpsum_warp fpsum, const char *info = "") {
#if ENABLE_NAN_CHECK
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

        for (int i = 0; i < fpsum.size(); i++) {
            for (int j = 0; j < 4; j++) {
                bool abnormal = !isfinite((float)fpsum[i].data[j].x) || !isfinite((float)fpsum[i].data[j].y);
                if (abnormal) {
                    printf("abnormal value detected at block.x=%d block.y=%d warpId=%d laneId=%d fpsum_warp (%s) i=%d j=%d data.x=%f data.y=%f\n", 
                        blockIdx.x, blockIdx.y,
                        warpId, laneId,
                        info,
                        i, j,
                        (float)fpsum[i].data[j].x,
                        (float)fpsum[i].data[j].y
                    );
                    __trap();
                }
            }
        }
#endif
    }

    __device__ __forceinline__
    static void checkNan(packed_f32psum_t fpsum, const char *info = "") {
#if ENABLE_NAN_CHECK
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

        for (int j = 0; j < 8; j++) {
            bool abnormal = !isfinite(fpsum.data[j]);
            if (abnormal) {
                printf("abnormal value detected at bm=%d bn=%d warpId=%d laneId=%d packed_f32psum_t (%s) j=%d data=%f\n", 
                    blockIdx.x, blockIdx.y,
                    warpId, laneId,
                    info,
                    j,
                    fpsum.data[j]
                );
                __trap();
            }
        }
#endif
    }

    __device__ __forceinline__
    static void checkNan(packed_fpsum_t fpsum, const char *info = "") {
#if ENABLE_NAN_CHECK
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

        for (int j = 0; j < 4; j++) {
            bool abnormal = !isfinite((float)fpsum.data[j].x) || !isfinite((float)fpsum.data[j].y);
            if (abnormal) {
                printf("abnormal value detected at bm=%d bn=%d warpId=%d laneId=%d packed_fpsum_t (%s) j=%d data.x=%f data.y=%f\n", 
                    blockIdx.x, blockIdx.y,
                    warpId, laneId,
                    info,
                    j,
                    (float)fpsum.data[j].x,
                    (float)fpsum.data[j].y
                );
                __trap();
            }
        }
#endif
    }

    __device__ __forceinline__
    static void checkNan(float data, const char *info = "") {
#if ENABLE_NAN_CHECK
        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

        bool abnormal = !isfinite(data);
        if (abnormal) {
            printf("abnormal value detected at bm=%d bn=%d warpId=%d laneId=%d packed_fpsum_t (%s) data=%f\n", 
                blockIdx.x, blockIdx.y,
                warpId, laneId,
                info,
                data
            );
            __trap();
        }
#endif
    }

    // out: [M / BLOCK_M, N / BLOCK_N, NUM_WARPS, 1, NUM_M_TILES, NUM_N_TILES, WARP_SIZE] of fpsum_warp
818
    template<typename Epilogue, bool ACT_UNSIGNED, bool USE_FP32_ACCUM>
muyangli's avatar
muyangli committed
819
820
821
822
823
824
825
826
827
828
    __device__ __forceinline__
    static void gemm_w4a4_block(
        const BlockInfo binfo,
        const packed_act_t *act,
        const packed_wgt_t *wgt,
        const packed_ascale_t *ascales,
        const packed_wscale_t *wscales,
        // const packed_wscale_t *bias_ptr,
        // half_t *out,
        int M, int N, int K, 
sxtyzhangzk's avatar
sxtyzhangzk committed
829
        const Epilogue::Arguments &epilogueArgs,
muyangli's avatar
muyangli committed
830
831
832
833
834
835
836
        bool alwaysfalse)
    {
        constexpr int NUM_STAGES = 2;

        const int laneId = threadIdx.x % WARP_SIZE;
        const int warpId = threadIdx.x / WARP_SIZE;

837
838
839
840
#if 0
        fpsum_warp fpsum;
        GEMM_W4A4_Block<Config>()(act, wgt, ascales, wscales, K, fpsum, alwaysfalse);
#else
muyangli's avatar
muyangli committed
841
842
843
844
        act_warp A[NUM_STAGES];  // 8
        wgt_warp W[NUM_STAGES];  // 32
        ascale_warp ascale[NUM_STAGES];  // 1
        wscale_warp wscale[NUM_STAGES];  // 2
845
        std::conditional_t<USE_FP32_ACCUM, f32psum_warp, fpsum_warp> fpsum;   // 64
muyangli's avatar
muyangli committed
846
847
848
849
850
851
852
853
854
855
856
857
858

        // load_wscale<true>(wscales, wscale[0], true);
        // load_wscale<false>(wscales, wscale[1], true);
        // load_wscale<false>(wscales, wscale[2], true);

        for (int k = 0; k < NUM_STAGES - 1; k++) {
            load_act(act, k, K, A[k], true);
            load_wgt(wgt, k, K, W[k], true);
            load_ascale(ascales, k, M, ascale[k], true);
            load_wscale(wscales, k, N, wscale[k], true);
        }

        for (auto &pack : fpsum) {
859
860
861
862
863
864
865
866
867
            if constexpr (USE_FP32_ACCUM) {
                for (int i = 0; i < 8; i++) {
                    pack.data[i] = 0;
                }
            } else {
                for (int i = 0; i < 4; i++) {
                    pack.data[i].x = 0;
                    pack.data[i].y = 0;
                }
muyangli's avatar
muyangli committed
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
            }
        }
        
        int dummy = 0;

        for (int k1 = 0; k1 < K / WARP_K; k1 += NUM_STAGES) {
    #pragma unroll
            for (int k2 = 0; k2 < NUM_STAGES; k2++) {
                int nextk = k1 + k2 + NUM_STAGES - 1;
                int idx = (k2 + NUM_STAGES - 1) % NUM_STAGES;
                bool pred = nextk < K / WARP_K;
                load_act(act, nextk, K, A[idx], pred);
                load_wgt(wgt, nextk, K, W[idx], pred);
                load_ascale(ascales, nextk, M, ascale[idx], pred);
                load_wscale(wscales, nextk, N, wscale[idx], pred);
                // load_wscale<false>(wscales, wscale[idx], pred);

                // __syncthreads();
                // if (alwaysfalse) {
                //     dummy = clock();
                // }

                compute<ACT_UNSIGNED>(A[k2], W[k2], ascale[k2], wscale[k2], fpsum);

892
            //#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
muyangli's avatar
muyangli committed
893
894
895
                if (alwaysfalse) {
                    dummy = clock();
                }
896
            //#endif
muyangli's avatar
muyangli committed
897
898
899
900
901
902
903

                // asm volatile ("membar.cta;");
            }
        }

        unused_var(dummy, alwaysfalse);

904
905
#endif

906
907
908
909
910
911
        fpsum_warp f16psum;
        if constexpr (USE_FP32_ACCUM) {
            f16psum = packed_fp32_to_fp16(fpsum);
        } else {
            f16psum = fpsum;
        }
muyangli's avatar
muyangli committed
912
913
914
915
916
917

        CHECK_NAN(f16psum, "f16psum");

        Epilogue()(binfo, f16psum, M, N, K, epilogueArgs);
    }

918
    template<bool FUSE_GELU, bool USE_UNSIGNED, bool USE_FP4>
muyangli's avatar
muyangli committed
919
    struct EpilogueQuantize {
920
921
        using oscales_t = typename std::conditional_t<USE_FP4, packed_amscale_t, packed_ascale_t>;

muyangli's avatar
muyangli committed
922
923
        struct Arguments {
            packed_act_t *qout;
924
            oscales_t *oscales;
muyangli's avatar
muyangli committed
925
926
927
928
929
930
931
932
933

            half_t shift_value;
            const packed_wscale_t *smooth_factor;
        };

        static constexpr int NUM_PACKS = INSN_K / INSN_N;
        static constexpr int NUM_GROUPS = WARP_N_TILES / NUM_PACKS;

        __device__ __forceinline__
934
        void apply_quantize(fpsum_warp fpsum, int M, int N, int K, packed_act_t *qout, oscales_t *oscales, half_t shift_value, const packed_wscale_t *smooth_factor) {
muyangli's avatar
muyangli committed
935
936
937
938
939
940
941
942
943
944
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            __shared__ half_t oscale_shmem[NUM_WARPS][WARP_M];

            wscale_warp smooth;
            load_wscale(smooth_factor, 0, N, smooth, true);

        #pragma unroll
            for (int group = 0; group < NUM_GROUPS; group++) {
945
946
                amscale_warp omscale;

muyangli's avatar
muyangli committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        #pragma unroll
                for (int i = 0; i < WARP_M_TILES; i++) {
                    packed_fpsum_t tmp[NUM_PACKS];

        #pragma unroll
                    for (int j = 0; j < NUM_PACKS; j++) {
                        half2_t ws1 = broadcast_wscale(smooth, (group * NUM_PACKS + j) * 4, laneId);
                        half2_t ws2 = broadcast_wscale(smooth, (group * NUM_PACKS + j) * 4 + 2, laneId);
        #pragma unroll
                        for (int k = 0; k < 4; k++) {
                            half2_t  src = fpsum[i * WARP_N_TILES + group * NUM_PACKS + j].data[k];
                            half2_t &dst = tmp[j].data[k];

                            // dst.x = gelu(src.x);
                            // dst.y = gelu(src.y);
                            if constexpr (FUSE_GELU) {
                                dst = gelu_half2(src);
                            } else {
                                dst = src;
                            }

                            dst += half2_t(shift_value, shift_value);
                            // dst = src;
                        }

                        tmp[j].data[0] = h2div(tmp[j].data[0], ws1);
                        tmp[j].data[1] = h2div(tmp[j].data[1], ws1);
                        tmp[j].data[2] = h2div(tmp[j].data[2], ws2);
                        tmp[j].data[3] = h2div(tmp[j].data[3], ws2);
                    }

                    packed_act_t qresult;
979
980
981
982
983
                    if constexpr (USE_FP4) {
                        quantize_w4a4_fp4_from_fpsum_warp(tmp, qresult, omscale[i / 2 / AMSCALES_PACK_SIZE].data[i / 2 % AMSCALES_PACK_SIZE], i % 2);
                    } else {
                        quantize_w4a4_from_fpsum_warp<USE_UNSIGNED>(tmp, qresult, &oscale_shmem[warpId][i * INSN_M]);
                    }
muyangli's avatar
muyangli committed
984
985
986
                    store(&qout[((group * NUM_WARPS + warpId) * WARP_M_TILES + i) * WARP_SIZE + laneId], qresult);
                }

987
988
989
990
991
992
993
994
995
996
997
998
                if constexpr (USE_FP4) {
                #pragma unroll
                    for (int k = 0; k < AMSCALES_NUM_PACKS; k++) {
                        store(&oscales[((group * NUM_WARPS + warpId) * AMSCALES_NUM_PACKS + k) * AMSCALES_VALID_LANES + laneId], omscale[k]);
                    }
                }
                if constexpr (!USE_FP4) {
                    __syncwarp();
                    pack_ascales(&oscale_shmem[warpId][0], &oscales[(group * NUM_WARPS + warpId) * ASCALES_NUM_PACKS * ASCALES_VALID_LANES]);
                    __syncwarp();
                }
                
muyangli's avatar
muyangli committed
999
1000
1001
1002
            }
        }

        __device__ __forceinline__
sxtyzhangzk's avatar
sxtyzhangzk committed
1003
        void operator()(const BlockInfo binfo, fpsum_warp fpsum, int M, int N, int K, const Arguments &args) {
muyangli's avatar
muyangli committed
1004
1005
1006
            const int bm = binfo.bm;
            const int bn = binfo.bn;

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
            if constexpr (!USE_FP4 || FP4_AVAILABLE) {
                apply_quantize(
                    fpsum, M, N, K, 
                    args.qout + (bm * N / WARP_K + bn * NUM_GROUPS) * NUM_WARPS * WARP_M_TILES * WARP_SIZE,
                    args.oscales + (bm * N / WARP_K + bn * NUM_GROUPS) * NUM_WARPS * 
                        (USE_FP4 ? AMSCALES_NUM_PACKS * AMSCALES_VALID_LANES : ASCALES_NUM_PACKS * ASCALES_VALID_LANES),
                    args.shift_value,
                    args.smooth_factor + bn * WSCALES_NUM_PACKS * WSCALES_VALID_LANES
                );
            } else {
                trap_no_fp4();
            }
muyangli's avatar
muyangli committed
1019
1020
1021
1022
1023
1024
        }
    };
    // using EpilogueQuantizeFuseGelu = EpilogueQuantize<true>;

    template<typename Epilogue, bool ACT_UNSIGNED>
    struct gemm_w4a4_kernel {
1025
1026
1027
        static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
        static constexpr int MAX_ARCH = Config::FASTER_I2F ? 750 : INT_MAX; // FASTER_I2F is only needed on sm_75

muyangli's avatar
muyangli committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        __device__
        void operator()(
            const packed_act_t *act,
            const packed_wgt_t *wgt,
            const packed_ascale_t *ascales,
            const packed_wscale_t *wscales,
            int M, int N, int K, 
            Epilogue::Arguments epilogueArgs,
            bool swapBlockXY,
            bool alwaysfalse)
        {
            // printf("Device sizeof(args) = %d", (int)sizeof(epilogueArgs));

            BlockInfo binfo = {
                .bm = (int)blockIdx.x,
                .bn = (int)blockIdx.y,
                .numBlocksM = (int)gridDim.x,
                .numBlocksN = (int)gridDim.y,
            };

            if (swapBlockXY) {
                std::swap(binfo.bm, binfo.bn);
                std::swap(binfo.numBlocksM, binfo.numBlocksN);
            }

            const int bm = binfo.bm;
            const int bn = binfo.bn;

            // bool fusequant = !out;

1058
            gemm_w4a4_block<Epilogue, ACT_UNSIGNED, false>(
muyangli's avatar
muyangli committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                binfo,
                act + bm * (K / WARP_K) * NUM_WARPS * WARP_M_TILES * WARP_SIZE,
                wgt + bn * (K / WARP_K) * WARP_N_TILES * WARP_SIZE,
                ascales + bm * (K / WARP_K) * NUM_WARPS * ASCALES_NUM_PACKS * ASCALES_VALID_LANES,
                wscales + bn * (K / WARP_K) * WSCALES_NUM_PACKS * WSCALES_VALID_LANES,
                // bias ? bias + bn * WSCALES_NUM_PACKS * WSCALES_VALID_LANES : nullptr,
                // out + (bm * BLOCK_M * N) + bn * BLOCK_N,
                // out + (bm * N / BLOCK_N + bn) * NUM_WARPS * WARP_M_TILES * WARP_N_TILES * WARP_SIZE,
                M, N, K,
                epilogueArgs,
                alwaysfalse
            );
        }
    };
1073

sxtyzhangzk's avatar
sxtyzhangzk committed
1074
1075
1076
1077
1078
    
    template<bool fuse_glu, bool use_fp4>
    struct quantize_w4a4_fuse_lora_kernel {
        using oscales_t = typename std::conditional_t<use_fp4, packed_amscale_t, packed_ascale_t>;

1079
        static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
sxtyzhangzk's avatar
sxtyzhangzk committed
1080
        static constexpr size_t SHMEM_PER_WARP = ceilDiv<size_t>(Base::template load_act_to_fpsum<fuse_glu>::SHMEM_SIZE, 128) * 128;
1081
1082
1083
1084
        static constexpr size_t SHMEM_SIZE = SHMEM_PER_WARP * NUM_WARPS;

        struct Arguments {
            const half_t *input;
sxtyzhangzk's avatar
sxtyzhangzk committed
1085
1086
1087
1088
1089
1090
1091
            const packed_wscale_t *smooth_factor;
            packed_act_t *output;
            oscales_t *oscales;
            const packed_fpsum_t *lora_wgt_down;
            float *lora_act;

            int lora_rank;
1092
1093

            // aligned to BLOCK_M and BLOCK_N
sxtyzhangzk's avatar
sxtyzhangzk committed
1094
1095
            int M, N;   // N should be the actual K in the next GEMM (needs /2 if fuse_glu)
            // the actual M and N   (no need to /2 if fuse_glu)
1096
1097
            int actualM, actualN;

sxtyzhangzk's avatar
sxtyzhangzk committed
1098
            bool alwaysfalse;
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        };

        __device__ __forceinline__
        void operator()(Arguments args) 
        {
            const BlockInfo binfo = {
                .bm = (int)blockIdx.x,
                .bn = (int)blockIdx.y,
                .numBlocksM = (int)gridDim.x,
                .numBlocksN = (int)gridDim.y,
            };

            const int bm = binfo.bm;
            const int bn = binfo.bn;
            const int warpId = threadIdx.x / WARP_SIZE;

            const int m_offset = bm * BLOCK_M + warpId * WARP_M;
sxtyzhangzk's avatar
sxtyzhangzk committed
1116
            const int n_offset = bn * BLOCK_N * (fuse_glu ? 2 : 1);
1117
1118
1119
1120
1121

            extern __shared__ uint8_t shmem[];

            fpsum_warp fpsum;

sxtyzhangzk's avatar
sxtyzhangzk committed
1122
            Base::template load_act_to_fpsum<fuse_glu>()(
1123
1124
1125
1126
1127
1128
                args.input + m_offset * args.actualN + n_offset,
                args.actualN,
                args.actualM - m_offset,
                args.actualN - n_offset,
                fpsum,
                shmem + warpId * SHMEM_PER_WARP
sxtyzhangzk's avatar
sxtyzhangzk committed
1129
                // args.smooth_factor ? args.smooth_factor + n_offset : nullptr
1130
1131
            );

sxtyzhangzk's avatar
sxtyzhangzk committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
            CHECK_NAN(fpsum, "fpsum");
            // for (int i = 0; i < 16; i++) {
            //     printf("bm=%d bn=%d warp=%d lane=%d fpsum[%d][0:1]=%f %f\n", 
            //         bm, bn, warpId, threadIdx.x % WARP_SIZE, i,
            //         (float)fpsum[i].data[0].x, (float)fpsum[i].data[0].y);
            // }

            using EpilogueLoraDown = typename Lora<Config>::EpilogueLoraDown;

            EpilogueLoraDown()(binfo, fpsum, args.M, args.N, 0, typename EpilogueLoraDown::Arguments{
                .lora_wgt_down = args.lora_wgt_down,
                .lora_act = args.lora_act,
                .rank = args.lora_rank,
                .alwaysfalse = args.alwaysfalse,
            });
1147

sxtyzhangzk's avatar
sxtyzhangzk committed
1148
1149
1150
1151
1152
            EpilogueQuantize<false, false, use_fp4>()(binfo, fpsum, args.M, args.N, 0, typename EpilogueQuantize<false, false, use_fp4>::Arguments{
                .qout = args.output,
                .oscales = args.oscales,
                .shift_value = 0,
                .smooth_factor = args.smooth_factor
1153
            });
sxtyzhangzk's avatar
sxtyzhangzk committed
1154

1155
1156
        }
    };
sxtyzhangzk's avatar
sxtyzhangzk committed
1157

muyangli's avatar
muyangli committed
1158
1159
1160
};

};  // namespace nunchaku::kernels