epilogues.cuh 33.6 KB
Newer Older
sxtyzhangzk's avatar
sxtyzhangzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
#pragma once

#include "gemm_base.cuh"

namespace nunchaku::kernels {

template<typename Config>
class Epilogues;

#ifndef __INTELLISENSE__
template<typename Config>
class Epilogues : public GEMMBase<Config> {
#else
template<>
class Epilogues<GEMMConfig_W4A4_FP16> : public GEMMBase<GEMMConfig_W4A4_FP16> {
    using Config = GEMMConfig_W4A4_FP16;
#endif
public:
    IMPORT_GEMM_BASE(Config);

public:

    struct EpilogueGelu {
        struct Arguments { size_t unused; };

        // static constexpr float SHIFT_VALUE = 0.171875f;

        __device__ __forceinline__
        void operator()(const BlockInfo binfo, fpsum_warp &fpsum, int M, int N, int K, const Arguments &args) {
        #pragma unroll
            for (int i = 0; i < WARP_M_TILES; i++) {
        #pragma unroll
                for (int j = 0; j < WARP_N_TILES; j++) {
        #pragma unroll
                    for (int k = 0; k < 4; k++) {
                        half2_t &data = fpsum[i * WARP_N_TILES + j].data[k];
                        data = gelu_half2(data);
                        // data = __hadd2(data, half2_t(SHIFT_VALUE, SHIFT_VALUE));
                    }
                }
            }
        }
    };

    // template<int PoolSize = 128>
    struct EpilogueQKVProj {
        struct Arguments {
            half_t *out;
            int actualM, actualN;

            half_t *pool_out;         // [M / PoolSize, N]
            const float *rotary_emb;        // [M, HEAD_DIM / 2, ROTARY_EMB_NUM_ELEMENTS]
            const half_t *rmsnorm_weight_q; // [HEAD_DIM]
            const half_t *rmsnorm_weight_k; // [HEAD_DIM]
            float epsilon;
        };

        static constexpr int HEAD_DIM = 128;
        static constexpr int NUM_HEADS_PER_WARP = WARP_N / HEAD_DIM;

        static constexpr int PoolSize = 128;
        static constexpr int NUM_WARPS_PER_POOL = PoolSize / WARP_M;
        static constexpr int NUM_POOLS_PER_BLOCK = BLOCK_M / PoolSize;

        static constexpr int ROTARY_EMB_NUM_ELEMENTS = 2;   // 1 for theta, 2 for {sin, cos} pair

        __device__ __forceinline__
        static void apply(fpsum_warp fpsum, half_t *out, int M, int N, int K, half_t *pool_out, const float *rotary_emb, const half_t *rmsnorm_weight, float epsilon, int maxRows) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            __shared__ alignas(128) uint8_t shmem[NUM_WARPS][ceilDiv(unpack_fpsum::SHMEM_SIZE, 128) * 128];

            constexpr int PACK_SIZE = unpack_fpsum::PACK_SIZE;
            using pack_t = unpack_fpsum::pack_t;

            using pack_rope_t = std::array<float, PACK_SIZE / 2 * ROTARY_EMB_NUM_ELEMENTS>;
            constexpr int LANES_PER_HEAD = HEAD_DIM / PACK_SIZE;

            pack_t reduce_tmp;
            __shared__ alignas(128) pack_t pool[NUM_WARPS];

            // load rmsnorm scales
            pack_t rms;
            if (laneId < LANES_PER_HEAD) {
                rms = load(reinterpret_cast<const pack_t *>(&rmsnorm_weight[laneId * PACK_SIZE]));
            }
            if constexpr (LANES_PER_HEAD < WARP_SIZE) {
                for (int i = 0; i < PACK_SIZE; i++) {
                    rms[i] = __shfl_sync(~0, rms[i], laneId % LANES_PER_HEAD);
                }
            }

            const float *rotary_emb_base_addr = &rotary_emb[(warpId * WARP_M) * HEAD_DIM / 2 * ROTARY_EMB_NUM_ELEMENTS + laneId * PACK_SIZE / 2 * ROTARY_EMB_NUM_ELEMENTS];

            CHECK_NAN(fpsum, "fpsum");

            unpack_fpsum()(fpsum, out + warpId * WARP_M * N, N, maxRows - warpId * WARP_M, INT_MAX, shmem[warpId], [&](int rowId, pack_t &pack) ALWAYSINLINE {
                // load rope
                pack_rope_t rope;
                if (laneId < LANES_PER_HEAD) {
                    // freq = load(reinterpret_cast<pack_freq_t *>(&freqs_cis[(warpId * WARP_M + rowId) * HEAD_DIM * 2 + laneId * PACK_SIZE * 2]));
                    rope = load(reinterpret_cast<const pack_rope_t *>(&rotary_emb_base_addr[rowId * HEAD_DIM / 2 * ROTARY_EMB_NUM_ELEMENTS]));
                }
                if constexpr (LANES_PER_HEAD < WARP_SIZE) {
                    for (int i = 0; i < rope.size(); i++) {
                        rope[i] = __shfl_sync(~0, rope[i], laneId % LANES_PER_HEAD);
                    }
                }

                // rmsnorm
                float sqrsum = 0.0f;
                for (int i = 0; i < PACK_SIZE; i++) {
                    sqrsum += float(pack[i]) * float(pack[i]);
                    CHECK_NAN(sqrsum, "sqrsum");
                }
            #pragma unroll
                for (int mask = LANES_PER_HEAD / 2; mask > 0; mask /= 2) {
                    sqrsum += __shfl_xor_sync(~0, sqrsum, mask);
                }
                sqrsum /= HEAD_DIM;
                float coef = cuda_frsqrt(sqrsum + epsilon);
                CHECK_NAN(coef, "coef");

                for (int i = 0; i < PACK_SIZE; i++) {
                    pack[i] *= coef * float(rms[i]);

                    CHECK_NAN(rms[i], "rms.wgt");
                    CHECK_NAN(pack[i], "rms.out");
                }

    #if 1
                // rope
                for (int i = 0; i < PACK_SIZE; i += 2) {
                    float2 pack2 = half22float2(half2_t(pack[i], pack[i+1]));

                    CHECK_NAN(freq[i].x, "rope.freq");
                    CHECK_NAN(freq[i].y, "rope.freq");
                    CHECK_NAN(freq[i+1].x, "rope.freq");
                    CHECK_NAN(freq[i+1].y, "rope.freq");

                    // half2_t tmp = __hmul2(freq[i], pack2);
                    // tmp = __hfma2(freq[i+1], pack2, tmp);
                    // pack[i] = tmp.x;
                    // pack[i+1] = tmp.y;

                    // printf("block.x=%d block.y=%d warpId=%d rowId=%d (%d) freqs = %f %f %f %f\n",
                    //     blockIdx.x, blockIdx.y, warpId, rowId,
                    //     blockIdx.x * BLOCK_M + warpId * WARP_M + rowId,
                    //     (float)freq[i].x, (float)freq[i].y, (float)freq[i+1].x, (float)freq[i+1].y
                    // );
                    // __trap();

                    // half2_t tmp = __hmul2(half2_t(pack2.x, pack2.x), freq[i]);
                    // tmp = __hfma2(half2_t(pack2.y, pack2.y), freq[i+1], tmp);
                    // pack[i] = tmp.x;
                    // pack[i+1] = tmp.y;

                    float sin, cos;

                    if constexpr (ROTARY_EMB_NUM_ELEMENTS == 1) {
                        sin = cuda_sin(rope[i / 2]);
                        cos = cuda_cos(rope[i / 2]);
                    }
                    if constexpr (ROTARY_EMB_NUM_ELEMENTS == 2) {
                        sin = rope[i];
                        cos = rope[i+1];
                    }

                    // pack[i]   = pack2.x * freq[i].x   + pack2.y * freq[i].y;
                    // pack[i+1] = pack2.x * freq[i+1].x + pack2.y * freq[i+1].y;

                    pack[i]   = half_t(pack2.x * cos - pack2.y * sin);
                    pack[i+1] = half_t(pack2.x * sin + pack2.y * cos);

                    CHECK_NAN(pack[i], "rope.out");
                    CHECK_NAN(pack[i+1], "rope.out");
                }
    #endif

                // mean pool
                for (int i = 0; i < PACK_SIZE; i++) {
                    reduce_tmp[i] += pack[i];
                }
            });

            if (!pool_out) {
                return;
            }

            store<true>(&pool[warpId], reduce_tmp);
            __syncthreads();

            if (warpId < NUM_POOLS_PER_BLOCK) {
                const int row = warpId * NUM_WARPS_PER_POOL;
                reduce_tmp = load<true>(&pool[row]);

                for (int i = 1; i < NUM_WARPS_PER_POOL; i++) {
                    pack_t pack = load<true>(&pool[row + i]);
                    for (int j = 0; j < PACK_SIZE; j++) {
                        reduce_tmp[j] += pack[j];
                    }
                }
                for (int j = 0; j < PACK_SIZE; j++) {
                    reduce_tmp[j] /= PoolSize;
                }

                store(reinterpret_cast<pack_t *>(pool_out + warpId * N), reduce_tmp);
            }
            __syncthreads();
        }

        __device__ __forceinline__
        void operator()(const BlockInfo binfo, fpsum_warp fpsum, int M, int N, int K, const Arguments &args) {
            const int bm = binfo.bm;
            const int bn = binfo.bn;

            assert(binfo.numBlocksN % 3 == 0);
            const bool is_q = bn < binfo.numBlocksN / 3;
            const bool is_k = !is_q && bn < binfo.numBlocksN / 3 * 2;

            assert(!args.pool_out || args.actualM == M);
            assert(args.actualN == N);

            if (is_q || is_k) {
                apply(
                    fpsum,
                    args.out + bm * BLOCK_M * args.actualN + bn * BLOCK_N,
                    M, N, K,
                    args.pool_out ? args.pool_out + bm * BLOCK_M / PoolSize * N : nullptr,
                    args.rotary_emb + bm * BLOCK_M * (HEAD_DIM / 2 * ROTARY_EMB_NUM_ELEMENTS),
                    is_q ? args.rmsnorm_weight_q : args.rmsnorm_weight_k,
                    args.epsilon,
                    args.actualM - bm * BLOCK_M
                );
            } else {
                EpilogueDefault()(binfo, fpsum, M, N, K, typename EpilogueDefault::Arguments{
                    .out = args.out,
                    .actualM = args.actualM,
                    .actualN = args.actualN,
                });
            }
        }
    };

    struct EpilogueRMSNormRope {
        static constexpr int HEAD_DIM = 128;
        static constexpr int NUM_HEADS_PER_WARP = WARP_N / HEAD_DIM;
        static constexpr int WARP_N_TILES_PER_HEAD = WARP_N_TILES / NUM_HEADS_PER_WARP;

        static constexpr int ROTARY_EMB_NUM_ELEMENTS = 2;

        using packed_rotemb_t = float4;
        static constexpr int WARP_N_ROTEMB_TILES = WARP_N_TILES / NUM_HEADS_PER_WARP * 2;
        using rotemb_warp = std::array<packed_rotemb_t, WARP_M_TILES * WARP_N_ROTEMB_TILES>; // 128 regs

        struct Arguments {
            // **packed** [M, HEAD_DIM] float => [M // 16, HEAD_DIM // 8, WARP_SIZE] of packed_rotemb_t
            // aka [M // BLOCK_M, NUM_WARPS, WARP_M_TILES, WARP_N_TILES // NUM_HEADS_PER_WARP * 2, WARP_SIZE]
            const packed_rotemb_t *rotary_emb;
            const half_t *rmsnorm_weight_q; // [HEAD_DIM]
            const half_t *rmsnorm_weight_k; // [HEAD_DIM]
            float epsilon;
        };

        __device__ __forceinline__
        static rotemb_warp load_rotemb(const packed_rotemb_t *ptr_rotemb) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            rotemb_warp rotemb;
            const packed_rotemb_t *ptrlane = &ptr_rotemb[warpId * WARP_M_TILES * WARP_N_ROTEMB_TILES * WARP_SIZE + laneId];

            unrolled_loop<WARP_M_TILES>([&]<int i>() {
                unrolled_loop<WARP_N_ROTEMB_TILES>([&]<int j>() {
                    constexpr int offset = (i * WARP_N_ROTEMB_TILES + j) * WARP_SIZE;
                    rotemb[i * WARP_N_ROTEMB_TILES + j] = load(&ptrlane[offset]);
                });
            });

            return rotemb;
        }

        __device__ __forceinline__
        static void load_rmsnorm(const half_t *ptr_rmsnorm_weight, half_t *shmem) {
            const int laneId = threadIdx.x % WARP_SIZE;

            static constexpr int PACK_SIZE = HEAD_DIM / WARP_SIZE;
            using packed_t = std::array<half_t, PACK_SIZE>;

            packed_t pack = load(reinterpret_cast<const packed_t *>(ptr_rmsnorm_weight + laneId * PACK_SIZE));
            store<true>(reinterpret_cast<packed_t *>(shmem + laneId * PACK_SIZE), pack);
        }

        __device__ __forceinline__
        static packed_fpsum_t load_rmsnorm_from_shmem(half_t *shmem, int n) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int col = n * INSN_N + laneId / 16 * 8;   // lane 0-15: n*16+0, lane 16-31: n*16+8
            uint4 tmp;
            ldmatrix(shmem + col, tmp);
            return kernels::bit_cast<packed_fpsum_t>(tmp);
        }

        __device__ __forceinline__
        static void apply(fpsum_warp &fpsum, const packed_rotemb_t *ptr_rotemb, const half_t *ptr_rmsnorm_weight, float epsilon) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            __shared__ half_t shmem_rmsnorm[NUM_WARPS][HEAD_DIM];
            load_rmsnorm(ptr_rmsnorm_weight, &shmem_rmsnorm[warpId][0]);
            __syncwarp();

            rotemb_warp rotemb = load_rotemb(ptr_rotemb);

            float rmsnorm_coef[NUM_HEADS_PER_WARP][WARP_M_TILES][2];

            auto sqr = [](half2_t val) ALWAYSINLINE {
                float2 fval = half22float2(val);
                return fval.x * fval.x + fval.y * fval.y;
            };

        #pragma unroll
            for (int head = 0; head < NUM_HEADS_PER_WARP; head++) {
                const int n_offset = head * WARP_N_TILES_PER_HEAD;

            #pragma unroll
                for (int m = 0; m < WARP_M_TILES; m++) {
                    float sqrsum[2] = {0.0f, 0.0f};
                #pragma unroll
                    for (int n = 0; n < WARP_N_TILES_PER_HEAD; n++) {
                        sqrsum[0] += sqr(fpsum[m * WARP_N_TILES + n + n_offset].data[0]);
                        sqrsum[1] += sqr(fpsum[m * WARP_N_TILES + n + n_offset].data[1]);
                        sqrsum[0] += sqr(fpsum[m * WARP_N_TILES + n + n_offset].data[2]);
                        sqrsum[1] += sqr(fpsum[m * WARP_N_TILES + n + n_offset].data[3]);
                    }
                #pragma unroll
                    for (int mask = 1; mask <= 2; mask *= 2) {
                        sqrsum[0] += __shfl_xor_sync(~0, sqrsum[0], mask);
                        sqrsum[1] += __shfl_xor_sync(~0, sqrsum[1], mask);
                    }
                    rmsnorm_coef[head][m][0] = cuda_frsqrt(sqrsum[0] / HEAD_DIM + epsilon);
                    rmsnorm_coef[head][m][1] = cuda_frsqrt(sqrsum[1] / HEAD_DIM + epsilon);
                }
            }

        #pragma unroll
            for (int head = 0; head < NUM_HEADS_PER_WARP; head++) {
                const int n_offset = head * WARP_N_TILES_PER_HEAD;

            #pragma unroll
                for (int n = 0; n < WARP_N_TILES_PER_HEAD; n++) {
                    packed_f32psum_t rms = packed_fp16_to_fp32(load_rmsnorm_from_shmem(&shmem_rmsnorm[warpId][0], n));
            #pragma unroll
                    for (int m = 0; m < WARP_M_TILES; m++) {
                        packed_f32psum_t pack = packed_fp16_to_fp32(fpsum[m * WARP_N_TILES + n + n_offset]);
                        pack.data[0] *= rmsnorm_coef[head][m][0] * rms.data[0];
                        pack.data[1] *= rmsnorm_coef[head][m][0] * rms.data[1];
                        pack.data[2] *= rmsnorm_coef[head][m][1] * rms.data[2];
                        pack.data[3] *= rmsnorm_coef[head][m][1] * rms.data[3];
                        pack.data[4] *= rmsnorm_coef[head][m][0] * rms.data[4];
                        pack.data[5] *= rmsnorm_coef[head][m][0] * rms.data[5];
                        pack.data[6] *= rmsnorm_coef[head][m][1] * rms.data[6];
                        pack.data[7] *= rmsnorm_coef[head][m][1] * rms.data[7];

                        auto rope = [](float &x, float &y, float sin, float cos) ALWAYSINLINE {
                            float ix = x, iy = y;
                            x = ix * cos - iy * sin;
                            y = ix * sin + iy * cos;
                        };

                        {
                            packed_rotemb_t sincos = rotemb[m * WARP_N_ROTEMB_TILES + n * 2];
                            rope(pack.data[0], pack.data[1], sincos.x, sincos.y);
                            rope(pack.data[2], pack.data[3], sincos.z, sincos.w);
                        }
                        {
                            packed_rotemb_t sincos = rotemb[m * WARP_N_ROTEMB_TILES + n * 2 + 1];
                            rope(pack.data[4], pack.data[5], sincos.x, sincos.y);
                            rope(pack.data[6], pack.data[7], sincos.z, sincos.w);
                        }

                        fpsum[m * WARP_N_TILES + n + n_offset] = packed_fp32_to_fp16(pack);
                    }
                }
            }
        }

        __device__ __forceinline__
        void operator()(const BlockInfo binfo, fpsum_warp &fpsum, int M, int N, int K, const Arguments &args) {
            const int bm = binfo.bm;
            const int bn = binfo.bn;

            assert(binfo.numBlocksN % 3 == 0);
            const bool is_q = bn < binfo.numBlocksN / 3;
            const bool is_k = !is_q && bn < binfo.numBlocksN / 3 * 2;

            if (is_q || is_k) {
                apply(
                    fpsum,
                    args.rotary_emb + bm * NUM_WARPS * WARP_M_TILES * WARP_N_ROTEMB_TILES * WARP_SIZE,
                    is_q ? args.rmsnorm_weight_q : args.rmsnorm_weight_k,
                    args.epsilon
                );
            }
        }
    };

    struct EpiloguePackQKV {
        using attn_half_t = half;
        using attn_half2_t = half2;
        using packed_qkv_t = uint4;

        static constexpr int HEAD_DIM = 128;
        static constexpr int INSN_K_QK = 16;
        static constexpr int INSN_K_PV = 16;

        struct Arguments {
            packed_qkv_t *out_q, *out_k, *out_v;
            int actualM;

            // !!! stride in number of packed_qkv_t !!!
            int strideHead_q;
            int strideHead_k;
            int strideHead_v;
        };

        __device__ __forceinline__ 
        static attn_half2_t convert_half2(half2_t input) {
            if constexpr (std::is_same_v<half2_t, attn_half2_t>) {
                return input;
            } else {
                float2 fval = half22float2(input);
                return float22half2<attn_half2_t>(fval);
            }
        }

        __device__ __forceinline__
        static packed_qkv_t pack_q(packed_fpsum_t input) {
            packed_qkv_t output;
            output.x = kernels::bit_cast<int>(convert_half2(input.data[0]));
            output.y = kernels::bit_cast<int>(convert_half2(input.data[1]));
            output.z = kernels::bit_cast<int>(convert_half2(input.data[2]));
            output.w = kernels::bit_cast<int>(convert_half2(input.data[3]));
            return output;
        }

        __device__ __forceinline__
        static packed_qkv_t pack_k(packed_fpsum_t input) {
            packed_qkv_t output;
            output.x = kernels::bit_cast<int>(convert_half2(input.data[0]));
            output.y = kernels::bit_cast<int>(convert_half2(input.data[2]));
            output.z = kernels::bit_cast<int>(convert_half2(input.data[1]));
            output.w = kernels::bit_cast<int>(convert_half2(input.data[3]));
            return output;
        }

        __device__ __forceinline__
        static packed_qkv_t pack_v(packed_fpsum_t input) {
            packed_qkv_t output;
            output.x = kernels::bit_cast<int>(convert_half2(movmatrix(input.data[0])));
            output.y = kernels::bit_cast<int>(convert_half2(movmatrix(input.data[1])));
            output.z = kernels::bit_cast<int>(convert_half2(movmatrix(input.data[2])));
            output.w = kernels::bit_cast<int>(convert_half2(movmatrix(input.data[3])));
            return output;
        }

        __device__ __forceinline__
        static void mask(packed_qkv_t &pack, uint32_t maskVal, int m, int maxRows) {
            const int laneId = threadIdx.x % WARP_SIZE;
            if (m * INSN_M + laneId / 4 >= maxRows) {
                pack.x = maskVal;
                pack.z = maskVal;
            }
            if (m * INSN_M + laneId / 4 + 8 >= maxRows) {
                pack.y = maskVal;
                pack.w = maskVal;
            }
        }

        // qkv: [batch, head, bm, NUM_WARPS, WARP_M_TILES, WARP_N_TILES, WARP_SIZE] of packed_qkv_t
        template<typename F>
        __device__ __forceinline__
        static void apply(fpsum_warp &fpsum, packed_qkv_t *ptr_output, int maxRows, F &&funcPack, attn_half2_t maskVal) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            static_assert(HEAD_DIM == WARP_N);

            packed_qkv_t *ptrlane = &ptr_output[((warpId * WARP_M_TILES + 0) * WARP_N_TILES + 0) * WARP_SIZE + laneId];
        
            unrolled_loop<WARP_M_TILES>([&]<int m>() ALWAYSINLINE {
                unrolled_loop<WARP_N_TILES>([&]<int n>() ALWAYSINLINE {
                    packed_qkv_t pack = funcPack(fpsum[m * WARP_N_TILES + n]);
                    mask(pack, kernels::bit_cast<uint32_t>(maskVal), m, maxRows - warpId * WARP_M);
                    store(&ptrlane[(m * WARP_N_TILES + n) * WARP_SIZE], pack);
                });
            });
        }

        __device__ __forceinline__
        void operator()(const BlockInfo binfo, fpsum_warp fpsum, int M, int N, int K, const Arguments &args) {
            const int bm = binfo.bm;
            const int bn = binfo.bn;

            assert(binfo.numBlocksN % 3 == 0);
            const int numBlocksQ = binfo.numBlocksN / 3;
            const bool is_q = bn < numBlocksQ;
            const bool is_k = !is_q && bn < numBlocksQ * 2;

            // bn is head_id (assume HEAD_DIM == WARP_N)
            int head_id, strideHead;
            if (is_q) {
                head_id = bn;
                strideHead = args.strideHead_q;
            } else if (is_k) {
                head_id = bn - numBlocksQ;
                strideHead = args.strideHead_k;
            } else {
                head_id = bn - numBlocksQ * 2;
                strideHead = args.strideHead_v;
            }

            int block_offset = head_id * strideHead + bm * NUM_WARPS * WARP_M_TILES * WARP_N_TILES * WARP_SIZE;
            int maxRows = args.actualM - bm * BLOCK_M;

            // static constexpr float neginf = -std::numeric_limits<float>::infinity();

            
            if (is_q) {
                apply(fpsum, args.out_q + block_offset, maxRows, pack_q, attn_half2_t(0.0f, 0.0f));
            } else if (is_k) {
                apply(fpsum, args.out_k + block_offset, maxRows, pack_k, attn_half2_t(NAN, NAN));
            } else {
                apply(fpsum, args.out_v + block_offset, maxRows, pack_v, attn_half2_t(0.0f, 0.0f));
            }
        }
    };

    struct EpilogueLiteLA {
        
        __device__ __forceinline__
        static packed_f32psum_t mma_litela(packed_fpsum_t k, packed_fpsum_t v, packed_f32psum_t psum) {
            for (int i = 0; i < 4; i++) {
                k.data[i] = movmatrix(k.data[i]);
                v.data[i] = movmatrix(v.data[i]);
            }
            std::swap(v.data[1], v.data[2]);
            return mma_f16xf16_f32(v, k, psum);
        }

        static constexpr int LITELA_HEAD_DIM = 32;
        static constexpr int LITELA_K_TILES = LITELA_HEAD_DIM / 16;
        static constexpr int LITELA_V_TILES = LITELA_HEAD_DIM / 16;

        static constexpr int SHMEM_SIZE = NUM_WARPS * (LITELA_HEAD_DIM + 1) * (LITELA_HEAD_DIM + 8) * sizeof(float);

        // out_vk: [batch_size, num_heads, head_dim + 1, head_dim]
        __device__ __forceinline__
        static void apply_litela(const BlockInfo binfo, fpsum_warp fpsum, float *out_vk, int num_blocks_per_batch) {
            const int laneId = threadIdx.x % WARP_SIZE;
            const int warpId = threadIdx.x / WARP_SIZE;

            using vk_t = float[NUM_WARPS][LITELA_HEAD_DIM + 1][LITELA_HEAD_DIM + 8];
            extern __shared__ uint8_t shmem[];
            
            vk_t &shmem_vk = *reinterpret_cast<vk_t *>(shmem);

            static_assert(sizeof(vk_t) == SHMEM_SIZE);
            static_assert(WARP_N == BLOCK_N);
            assert(binfo.numBlocksN % 3 == 0);

            const int num_heads = binfo.numBlocksN / 3 * 2 * (WARP_N / (LITELA_HEAD_DIM * 2));
            const int batch_id = binfo.bm / num_blocks_per_batch;

            for (int head_id = 0; head_id < WARP_N / (LITELA_HEAD_DIM * 2); head_id++) {
                const int global_head_id = (binfo.bn - binfo.numBlocksN / 3) * (WARP_N / (LITELA_HEAD_DIM * 2)) + head_id;
                float *out_vk_current_head = out_vk + (batch_id * num_heads + global_head_id) * (LITELA_HEAD_DIM + 1) * LITELA_HEAD_DIM;

                for (int i = laneId; i < sizeof(shmem_vk) / sizeof(float) / NUM_WARPS; i += WARP_SIZE) {
                    *((&shmem_vk[warpId][0][0]) + i) = 0;
                }
                __syncwarp();

                for (int tile_v = 0; tile_v < LITELA_V_TILES; tile_v++) {
                    for (int tile_k = 0; tile_k < LITELA_K_TILES; tile_k++) {
                        packed_f32psum_t attn_sum = { 0 };
                        for (int i = 0; i < WARP_M_TILES; i++) {
                            packed_fpsum_t k = fpsum[i * WARP_N_TILES + head_id * (LITELA_HEAD_DIM * 2) / 16 + tile_k];
                            packed_fpsum_t v = fpsum[i * WARP_N_TILES + head_id * (LITELA_HEAD_DIM * 2) / 16 + LITELA_HEAD_DIM / 16 + tile_v];
                            for (int j = 0; j < 4; j++) {
                                k.data[j] = __hmax2(k.data[j], half2_t(0, 0));  // relu
                            }
                            attn_sum = mma_litela(k, v, attn_sum);
                        }

                        const int row = tile_v * 16 + laneId / 4;
                        const int col = tile_k * 16 + laneId % 4 * 2;

                        shmem_vk[warpId][row + 0][col + 0] = attn_sum.data[0];
                        shmem_vk[warpId][row + 0][col + 1] = attn_sum.data[1];
                        shmem_vk[warpId][row + 8][col + 0] = attn_sum.data[2];
                        shmem_vk[warpId][row + 8][col + 1] = attn_sum.data[3];
                        shmem_vk[warpId][row + 0][col + 8] = attn_sum.data[4];
                        shmem_vk[warpId][row + 0][col + 9] = attn_sum.data[5];
                        shmem_vk[warpId][row + 8][col + 8] = attn_sum.data[6];
                        shmem_vk[warpId][row + 8][col + 9] = attn_sum.data[7];
                    }
                }
                for (int tile_k = 0; tile_k < LITELA_K_TILES; tile_k++) {
                    packed_f32psum_t attn_sum = { 0 };
                    for (int i = 0; i < WARP_M_TILES; i++) {
                        packed_fpsum_t k = fpsum[i * WARP_N_TILES + head_id * (LITELA_HEAD_DIM * 2) / 16 + tile_k];
                        packed_fpsum_t v = {};
                        for (int j = 0; j < 4; j++) {
                            k.data[j] = __hmax2(k.data[j], half2_t(0, 0));  // relu
                        }
                    #pragma unroll
                        for (int i = 0; i < 4; i++) {
                            v.data[i] = half2_t(1, 1);
                        }
                        // if (laneId < 4) {
                        //     v.data[0] = half2_t(1, 1);
                        //     v.data[2] = half2_t(1, 1);
                        // }
                        // if (laneId % 4 == 0) {
                        //     v.data[0] = half2_t(1, 0);
                        //     v.data[1] = half2_t(1, 0);
                        // }
                        attn_sum = mma_litela(k, v, attn_sum);
                    }
                    const int row = LITELA_HEAD_DIM + laneId / 4;
                    const int col = tile_k * 16 + laneId % 4 * 2;

                    if (laneId < 4) {
                        shmem_vk[warpId][row + 0][col + 0] = attn_sum.data[0];
                        shmem_vk[warpId][row + 0][col + 1] = attn_sum.data[1];
                        shmem_vk[warpId][row + 0][col + 8] = attn_sum.data[4];
                        shmem_vk[warpId][row + 0][col + 9] = attn_sum.data[5];
                    }
                }
                __syncthreads();

                for (int i = warpId; i < LITELA_HEAD_DIM + 1; i += NUM_WARPS) {
                    for (int j = laneId; j < LITELA_HEAD_DIM; j += WARP_SIZE) {
                        float sum = 0;
                        for (int k = 0; k < NUM_WARPS; k++) {
                            sum += shmem_vk[k][i][j];
                        }
                        reduce_add(&out_vk_current_head[i * LITELA_HEAD_DIM + j], sum);
                    }
                }
                __syncthreads();
            }
        }

        struct Arguments {
            half_t *out_q;
            float *out_vk;
            int num_blocks_per_batch;
            int actualM;
        };

        __device__ __forceinline__
        void operator()(const BlockInfo binfo, fpsum_warp fpsum, int M, int N, int K, const Arguments &args) {
            const int bm = binfo.bm;
            const int bn = binfo.bn;

            if (bn < binfo.numBlocksN / 3) {
                fpsum = apply_act(fpsum, [](half_t x) { return __hmax(x, 0); });    // relu
                return EpilogueDefault()(
                    binfo,
                    fpsum, 
                    M, N / 3, K, typename EpilogueDefault::Arguments{
                        .out = args.out_q,
                        .actualM = args.actualM,
                        .actualN = N / 3,
                    });
            }

            return apply_litela(binfo, fpsum, args.out_vk, args.num_blocks_per_batch);
        }

        // each thread block mults BlockSize*HEAD_DIM q and (HEAD_DIM+1)*HEAD_DIM vk, in-place writes back to q
        // q:   [batch_size, #blocks, block_size, #heads, HEAD_DIM]
        // vk:  [batch_size, #heads, HEAD_DIM+1, HEAD_DIM]
        struct vk_mul_q_kernel {
            static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
            // FIXME FIXME FIXME
            __device__
            void operator()(half_t *q, const float *vk, float eps, int num_tokens) {
                const int block_id = blockIdx.x;
                const int head_id  = blockIdx.y;
                const int batch_id = blockIdx.z;

                const int num_blocks = gridDim.x;
                const int num_heads = gridDim.y;
                const int block_size = blockDim.x;

                bool pred = block_id * block_size + threadIdx.x < num_tokens;

                half_t *localq = &q[(((batch_id * num_blocks + block_id) * block_size + threadIdx.x) * num_heads + head_id) * LITELA_HEAD_DIM];
                const float *localvk = &vk[(batch_id * num_heads + head_id) * (LITELA_HEAD_DIM + 1) * LITELA_HEAD_DIM];
                // half_t *localout = &out[(((batch_id * num_blocks + block_id) * block_size + threadIdx.x) * num_heads + head_id) * LITELA_HEAD_DIM];

                using packed_q = std::array<half_t, 8>;
                using packed_vk = std::array<float, 4>;

                half_t qblock[LITELA_HEAD_DIM];
                for (int i = 0; i < LITELA_HEAD_DIM; i += sizeof(packed_q) / sizeof(half_t)) {
                    if (pred) {
                        *reinterpret_cast<packed_q *>(&qblock[i]) = load(reinterpret_cast<const packed_q *>(&localq[i]));
                    }
                }

                float outblock[LITELA_HEAD_DIM + 1];
            #pragma unroll
                for (int j = 0; j < LITELA_HEAD_DIM + 1; j++) {
                    outblock[j] = 0;
            #pragma unroll
                    for (int i = 0; i < LITELA_HEAD_DIM; i += sizeof(packed_vk) / sizeof(float)) {
                        packed_vk vkpack = load(reinterpret_cast<const packed_vk *>(&localvk[j * LITELA_HEAD_DIM + i]));
            #pragma unroll
                        for (int k = 0; k < vkpack.size(); k++) {
                            outblock[j] += (float)qblock[i + k] * vkpack[k];
                        }
                    }
                }
                
                for (int i = 0; i < LITELA_HEAD_DIM; i += sizeof(packed_q) / sizeof(half_t)) {
                    packed_q opack;
                    for (int k = 0; k < opack.size(); k++) {
                        opack[k] = __fdividef(outblock[i + k], outblock[LITELA_HEAD_DIM] + eps);
                    }
                    if (pred) {
                        store(reinterpret_cast<packed_q *>(&localq[i]), opack);
                    }
                }
            }
        };
    };


    template<typename Epilogue>
    struct test_epilogue_kernel {
        static constexpr int MIN_ARCH = std::is_same_v<half_t, __nv_bfloat16> ? 800 : 750;
        static constexpr size_t SHMEM_PER_WARP = ceilDiv<size_t>(Base::template load_act_to_fpsum<false>::SHMEM_SIZE, 128) * 128;
        static constexpr size_t SHMEM_SIZE = SHMEM_PER_WARP * NUM_WARPS;

        struct Arguments {
            const half_t *input;
            half_t *output;

            // aligned to BLOCK_M and BLOCK_N
            int M, N;
            int actualM, actualN;

            typename Epilogue::Arguments argsEpilogue;
        };

        __device__ __forceinline__
        void operator()(Arguments args) 
        {
            const BlockInfo binfo = {
                .bm = (int)blockIdx.x,
                .bn = (int)blockIdx.y,
                .numBlocksM = (int)gridDim.x,
                .numBlocksN = (int)gridDim.y,
            };

            const int bm = binfo.bm;
            const int bn = binfo.bn;
            const int warpId = threadIdx.x / WARP_SIZE;

            const int m_offset = bm * BLOCK_M + warpId * WARP_M;
            const int n_offset = bn * BLOCK_N;

            extern __shared__ uint8_t shmem[];

            fpsum_warp fpsum;

            Base::template load_act_to_fpsum<false>()(
                args.input + m_offset * args.actualN + n_offset,
                args.actualN,
                args.actualM - m_offset,
                args.actualN - n_offset,
                fpsum,
                shmem + warpId * SHMEM_PER_WARP
            );

            Epilogue()(binfo, fpsum, args.M, args.N, 0, args.argsEpilogue);

            EpilogueDefault()(binfo, fpsum, args.M, args.N, 0, typename EpilogueDefault::Arguments{
                .out = args.output,
                .actualM = args.actualM,
                .actualN = args.actualN,
            });
        }
    };

};


};  // namespace nunchaku::kernels