gemm_f16.cu 5.35 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
#include "gemm_f16.h"

muyangli's avatar
muyangli committed
3
4
#include "dispatch_cutlass.h"

Zhekai Zhang's avatar
Zhekai Zhang committed
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <cutlass/core_io.h>
#include <cutlass/cutlass.h>
#include <cutlass/half.h>
#include <cutlass/bfloat16.h>

#include <cutlass/gemm/device/gemm.h>
#include <cutlass/numeric_types.h>

using spdlog::fmt_lib::format;

Tensor gemm_f16(Tensor input,  // FP16
                Tensor weight, // FP16
                Tensor out,      // FP16
muyangli's avatar
muyangli committed
18
19
                Tensor bias,
                float alpha
Zhekai Zhang's avatar
Zhekai Zhang committed
20
21
22
23
24
25
26
27
) {
    auto N = weight.size(0);
    auto K = input.size(-1);
    auto M = input.numel() / K;
    assert(weight.size(1) == K);

    spdlog::debug("gemm_f16: M={} K={} N={}", M, K, N);

muyangli's avatar
muyangli committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    dispatchF16(weight.dtype(), [&]<typename half_t>() {

        using ElementOutput = half_t;
        using ElementAccumulator = float;
        using ElementComputeEpilogue = half_t;
        using ElementInputA = half_t; // <- data type of elements in input matrix A
        using ElementInputB = half_t; // <- data type of elements in input matrix B

        using LayoutInputA = cutlass::layout::RowMajor;
        using LayoutInputB = cutlass::layout::ColumnMajor;
        using LayoutOutput = cutlass::layout::RowMajor;

    // #if CUDA_ARCH >= 800
        using Gemm = cutlass::gemm::device::Gemm<
            ElementInputA, cutlass::layout::RowMajor, ElementInputB, cutlass::layout::ColumnMajor,
            ElementOutput, cutlass::layout::RowMajor, ElementAccumulator,
44
45
46
47
48
49
50
            cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75>;
            // cutlass::gemm::GemmShape<128, 128, 64>,
            // cutlass::gemm::GemmShape<32, 64, 64>, cutlass::gemm::GemmShape<16, 8, 16>,
            // cutlass::epilogue::thread::LinearCombination<
            //     ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
            //     ElementAccumulator, ElementComputeEpilogue>,
            // cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, 3>;
muyangli's avatar
muyangli committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        auto input_size = cutlass::MatrixCoord(M, K);
        auto weight_size = cutlass::MatrixCoord(K, N);
        auto output_size = cutlass::MatrixCoord(M, N);

        auto device = input.device();
        // use the broadcasted bias as the output
        // auto out = bias.to(device).view({1, -1}).repeat({M, 1});

        if (!out.valid()) {
            auto out_shape = TensorShape(input.shape.dataExtent);
            out_shape[-1] = N;
            out = Tensor::empty(out_shape, input.scalar_type(), input.device());
        }

        // FIXME: check contiguous of input if dims >= 3
        assert(input.stride(-1) == 1);
        // assert(input.is_contiguous());
        assert(weight.is_contiguous());

        assert(out.dtype() == input.scalar_type());
        assert(out.shape[-1] == N);
        assert(out.numel() / out.shape[-1] == M);
        assert(out.stride(-1) == 1);
        // FIXME: check contiguous of output if dims >= 3

        assert(!bias.valid() || (bias.ndims() == 1 && bias.shape[0] == N));

        // constexpr int kSparse = Gemm::kSparse;
        // How many elements of A are covered per ElementE
        // constexpr int kElementsPerElementE = Gemm::kElementsPerElementE;
        // The size of individual meta data
        // constexpr int kMetaSizeInBits = Gemm::kMetaSizeInBits;
        cutlass::gemm::GemmCoord problem_size(M, N, K);

        cutlass::TensorRef<ElementInputA, LayoutInputA> input_ref(
            input.data_ptr<ElementInputA>(), LayoutInputA(input.stride(-2)));
        cutlass::TensorRef<ElementInputB, LayoutInputB> weight_ref(
            weight.data_ptr<ElementInputB>(), LayoutInputB::packed(weight_size));
        cutlass::TensorRef<ElementOutput, LayoutOutput> bias_ref(
            bias.valid() ? bias.data_ptr<ElementOutput>() : out.data_ptr<ElementOutput>(), LayoutOutput(0));
        cutlass::TensorRef<ElementOutput, LayoutOutput> out_ref(
            out.data_ptr<ElementOutput>(), LayoutOutput(out.stride(-2)));

        typename Gemm::Arguments arguments{
            problem_size, // <- problem size of matrix multiplication
            input_ref,    // <- reference to matrix A on device
            weight_ref,   // <- reference to matrix B on device
            bias_ref,      // <- reference to matrix C on device
            out_ref,      // <- reference to matrix D on device
            {ElementOutput(alpha), ElementOutput(bias.valid() ? 1.0f : 0.0f)},
            1};
        Gemm gemm_op;

        // Using the arguments, query for extra workspace required for matrix
        // multiplication computation
        size_t workspace_size = Gemm::get_workspace_size(arguments);

        // Allocate workspace memory
        // cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

        BufferCUDA workspace(workspace_size);

        // Check the problem size is supported or not
        cutlass::Status status = gemm_op.can_implement(arguments);
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error(format("cutlass cannot implement M={} N={} K={}", M, N, K));
        }

        // Initialize CUTLASS kernel with arguments and workspace pointer
        status = gemm_op.initialize(arguments, workspace.getPtr());
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error("cutlass cannot initialize");
        }

        status = gemm_op();
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error("cutlass cannot run");
        }

    });

    
Zhekai Zhang's avatar
Zhekai Zhang committed
134
135
    return out;
}