misc_kernels_impl.cuh 6.96 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
#include "reduction_utils.cuh"
#include <array>

4
5
6
#include <cuda_fp16.h>
#include <cuda_bf16.h>

Zhekai Zhang's avatar
Zhekai Zhang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include "utils.cuh"
#include "activation_kernels_impl.cuh"


template<typename T>
__global__ void add_kernel(T *a, T *b, T *c, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i < length) {
        c[i] = a[i] + b[i];
    }
}

template<typename T, int unroll>
struct alignas(sizeof(T) * unroll) Tvec {
    T data[unroll];
};

template<typename T, int unroll>
__global__ void mul_add_kernel(T *x, T *scale, T *bias, size_t length, int mod_scale, int mod_bias) {

    int thread = threadIdx.x + blockIdx.x * blockDim.x;
    int i = thread * unroll;
    int i_scale = i % mod_scale;
    int i_bias = i % mod_bias;

    if (i >= length) {
        return;
    }

    using Tvec = ::Tvec<T, unroll>;

    Tvec rx = *reinterpret_cast<Tvec *>(&x[i]);
    Tvec rscale = *reinterpret_cast<Tvec *>(&scale[i_scale]);
    Tvec rbias = *reinterpret_cast<Tvec *>(&bias[i_bias]);

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        T tmp = rx.data[k] * rscale.data[k] + rbias.data[k];
        if constexpr (std::is_same_v<T, half>) {
            tmp = __hmin(tmp, (half)65504);
            tmp = __hmax(tmp, (half)-65504);
        }
        rx.data[k] = tmp;
    }

    *reinterpret_cast<Tvec *>(&x[i]) = rx;

// #pragma unroll
//     for (int k = 0; k < unroll; k++) {
//         // assert(i < length);
//         x[i] = x[i] * scale[i_scale] + bias[i_bias];
//         i++;
//         i_scale++;
//         i_bias++;
//         // assert(i_scale < mod_scale);
//         // assert(i_bias < mod_bias);
//     }
}

template<typename T, size_t N>
__global__ void split_mod_kernel(T *input, std::array<T *, N> output, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i * N < length) {
#pragma unroll
        for (int k = 0; k < N; k++) {
            output[k][i] = input[i * N + k];
        }
    }
}

template<typename T>
__global__ void EmbeddingKernel(int32_t *__restrict__ input_id, T *__restrict__ output, T *__restrict__ lookup, int embed_dim) {
    int i = blockIdx.x;

    int32_t token_id = input_id[i];
    T *output_sample_ptr = output + i * embed_dim;
    T *target_embed = lookup + token_id * embed_dim;

    for (int j = threadIdx.x; j < embed_dim; j += blockDim.x) {
        output_sample_ptr[j] = target_embed[j];
    }
}

template<typename T>
__global__ void argmax_sample_kernel(T *input, int32_t *output, int hidden_dim) {
    float maxValue = -1e20;
    int argmax = 0;
    for (int i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
        float data = (float)input[blockIdx.x * hidden_dim + i];
        if (data > maxValue) {
            maxValue = data;
            argmax   = i;
        }
    }
    // blockAllReduceMax seems to be broken when T=half 
    float maxValueBlock = vllm::blockAllReduceMax(maxValue);
    if (maxValue == maxValueBlock) {
        output[blockIdx.x] = argmax;
    }
}

template<typename T>
__global__ void splitqkv_kernel(T *qkv, T *q, T *k, T *v, int q_size, int kv_size) {
    int qkv_size = q_size + 2 * kv_size;
    for (int i = threadIdx.x; i < qkv_size; i += blockDim.x) {
        T data = qkv[blockIdx.x * qkv_size + i];
        if (i < q_size) {
            q[blockIdx.x * q_size + i] = data;
        } else if (i < q_size + kv_size) {
            k[blockIdx.x * kv_size + i - q_size] = data;
        } else {
            v[blockIdx.x * kv_size + i - q_size - kv_size] = data;
        }
    }
}

template <typename T, int unroll>
__global__ void quant_kernel_static(const T * input, int8_t * output, T scale, size_t length) {
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

    using Tvec = ::Tvec<T, unroll>;
    using I8vec = ::Tvec<int8_t, unroll>;

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)rinput.data[k]) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

template <typename T, int unroll>
__global__ void quant_kernel_static_fuse_gelu(const T * input, int8_t * output, T scale, size_t length) {
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

    using Tvec = ::Tvec<T, unroll>;
    using I8vec = ::Tvec<int8_t, unroll>;

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)vllm::gelu_new_kernel(rinput.data[k])) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
template<typename Tin, typename Tout, int unroll>
__global__ void cast_kernel(const Tin *input, Tout *output, size_t length) {
    const int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;

    using Tvec_in = ::Tvec<Tin, unroll>;
    using Tvec_out = ::Tvec<Tout, unroll>;

    Tvec_in  rinput = *reinterpret_cast<const Tvec_in *>(&input[i]);
    Tvec_out routput;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = cuda_cast<Tout, Tin>(rinput.data[k]);
        if constexpr (std::is_same_v<Tout, half>) {
            routput.data[k] = __hmin(routput.data[k], (half)65504);
            routput.data[k] = __hmax(routput.data[k], (half)-65504);
        }
    }

    *reinterpret_cast<Tvec_out *>(&output[i]) = routput;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

// input:  [..., N]
// output: [..., K] of index in reverse order
template<typename T, int K>
__global__
void topk_kernel(const T *input, int *output, int N, int strideInput, int numRows) {
    const int row = blockIdx.x * blockDim.x + threadIdx.x;
    const int offset = row * strideInput;

    if (row >= numRows) {
        return;
    }

    T   val[K];
    int16_t idx[K];

#pragma unroll
    for (int i = 0; i < K; i++) {
        val[i] = input[offset + i];
        idx[i] = i;
    }

    // if (blockIdx.x == 0 && threadIdx.x == 0) {
    //     for (int i = 0; i < K; i++) {
    //         printf("%d ", idx[i]);
    //     }
    //     printf("\n");
    // }

    for (int i = K; i < N; i++) {
        T newval = input[offset + i];

        T minval = val[0];
        int minpos = 0;
#pragma unroll
        for (int j = 1; j < K; j++) {
            if (val[j] < minval) {
                minval = val[j];
                minpos = j;
            }
        }

        if (newval >= minval) {
#pragma unroll
            for (int j = 0; j < K; j++) {
                if (j >= minpos) {
                    val[j] = val[j + 1];
                    idx[j] = idx[j + 1];
                }
            }
            val[K - 1] = newval;
            idx[K - 1] = i;
        }

        // if (blockIdx.x == 0 && threadIdx.x == 0) {
        //     for (int i = 0; i < K; i++) {
        //         printf("%d ", idx[i]);
        //     }
        //     printf("\n");
        // }
    }

    for (int i = 0; i < K; i++) {
        output[row * K + i] = idx[K - i - 1];
    }
}