misc_kernels.cu 7.92 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include "misc_kernels_impl.cuh"
#include "misc_kernels.h"
#include "dispatch_utils.h"

Tensor add(Tensor a, Tensor b) {
    assert(a.shape.dataExtent == b.shape.dataExtent);
    assert(a.dtype() == b.dtype());
    assert(a.is_contiguous());
    assert(b.is_contiguous());

    int threadsPerBlock = 1024;
    int blocksPerGrid = (a.numel() + threadsPerBlock - 1) / threadsPerBlock;

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty_like(a);

    dispatch(out.scalar_type(), [&]<typename scalar_t>() {
        add_kernel<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            a.data_ptr<scalar_t>(), b.data_ptr<scalar_t>(), out.data_ptr<scalar_t>(), out.numel());
    });

    return out;
}

void mul_add(Tensor x, Tensor scale, Tensor bias) {
    // assert(scale.shape.data == bias.shape.data);
    // FIXME FIXME
    assert(x.numel() % scale.numel() == 0);
    assert(x.numel() % bias.numel() == 0);
    assert(x.dtype() == scale.dtype());
    assert(x.dtype() == bias.dtype());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);
    assert((uintptr_t)scale.data_ptr() % (x.scalar_size() * unroll) == 0);
    assert((uintptr_t)bias.data_ptr() % (x.scalar_size() * unroll) == 0);

    assert(x.numel() % unroll == 0);
    assert(scale.numel() % unroll == 0);
    assert(bias.numel() % unroll == 0);

    int threadsPerBlock = 1024;
    int blocksPerGrid = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        mul_add_kernel<scalar_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            x.data_ptr<scalar_t>(), scale.data_ptr<scalar_t>(), bias.data_ptr<scalar_t>(), x.numel(), scale.numel(), bias.numel());
    });
}

Tensor embedding(Tensor input_id, Tensor lookup) {
    assert(input_id.dtype() == Tensor::INT32);
    assert(lookup.ndims() == 2);

    auto shapeOut = input_id.shape;
    shapeOut.dataExtent.push_back(lookup.shape[-1]);

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty(shapeOut, lookup.scalar_type(), input_id.device());

    dispatch(out.scalar_type(), [&]<typename scalar_t>() {
        EmbeddingKernel<<<input_id.numel(), std::min(lookup.shape[-1], 1024), 0, stream>>>(
            input_id.data_ptr<int32_t>(), out.data_ptr<scalar_t>(), lookup.data_ptr<scalar_t>(), lookup.shape[-1]);
    });

    return out;
}

Tensor argmax_sample(Tensor logits) {
    assert(logits.ndims() == 2);

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty({logits.shape[0]}, Tensor::INT32, logits.device());

    dispatch(logits.scalar_type(), [&]<typename scalar_t>() {
        argmax_sample_kernel<<<logits.shape[0], std::min(logits.shape[1], 1024), 0, stream>>>(
            logits.data_ptr<scalar_t>(), out.data_ptr<int32_t>(), logits.shape[1]
        );
    });

    return out;
}

void splitqkv(Tensor qkv, Tensor q, Tensor k, Tensor v) {
    // FIXME FIXME
    // assert(qkv.shape[0] == q.shape[0]);
    // assert(qkv.shape[0] == k.shape[0]);
    // assert(qkv.shape[0] == v.shape[0]);

    auto stream = getCurrentCUDAStream();

    int dim_q = q.shape[-1] * q.shape[-2];
    int dim_k = k.shape[-1] * k.shape[-2];
    int dim_v = v.shape[-1] * v.shape[-2];

    assert(dim_k == dim_v);
    assert(dim_q + dim_k + dim_v == qkv.shape[-1]);
    
    int num_tokens = qkv.numel() / qkv.shape[-1];

    dispatch(qkv.scalar_type(), [&]<typename scalar_t>() {
        splitqkv_kernel<<<num_tokens, std::min(qkv.shape[-1], 1024), 0, stream>>>(
            qkv.data_ptr<scalar_t>(),
            q.data_ptr<scalar_t>(),
            k.data_ptr<scalar_t>(),
            v.data_ptr<scalar_t>(),
            dim_q,
            dim_k
        );
    });

}

template<size_t N>
std::array<Tensor, N> split_mod(Tensor input) {
    assert(input.shape[-1] % N == 0);

    int threadsPerBlock = 1024;
    int blocksPerGrid = (input.numel() + threadsPerBlock - 1) / threadsPerBlock;

    auto stream = getCurrentCUDAStream();

    auto shapeOut = input.shape;
    shapeOut[-1] /= N;

    std::array<Tensor, N> out;
    for (int k = 0; k < N; k++) {
        out[k] = Tensor::empty(shapeOut, input.scalar_type(), input.device());
    }

    dispatch(input.scalar_type(), [&]<typename scalar_t>() {
        std::array<scalar_t *, N> outPtr;
        for (int k = 0; k < N; k++) {
            outPtr[k] = out[k].template data_ptr<scalar_t>();
        }
        split_mod_kernel<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            input.data_ptr<scalar_t>(),
            outPtr, input.numel());
    });

    return out;
}

Tensor quant_static(Tensor x, float scale) {
    Tensor out = Tensor::empty(x.shape, Tensor::INT8, x.device());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);

    int threadsPerBlock = 1024;
    int blocksPerGrid = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        quant_kernel_static<scalar_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            x.data_ptr<scalar_t>(), out.data_ptr<int8_t>(), (scalar_t)scale, x.numel());
    });

    return out;
}

Tensor quant_static_fuse_gelu(Tensor x, float scale) {
    Tensor out = Tensor::empty(x.shape, Tensor::INT8, x.device());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);


    int threadsPerBlock = 1024;
    int blocksPerGrid = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        quant_kernel_static_fuse_gelu<scalar_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            x.data_ptr<scalar_t>(), out.data_ptr<int8_t>(), (scalar_t)scale, x.numel());
    });

    return out;
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
void cast(Tensor input, Tensor output) {
    assert(input.is_contiguous());
    assert(output.is_contiguous());
    assert(input.shape.dataExtent == output.shape.dataExtent);

    auto stream = getCurrentCUDAStream();

    dispatch(input.scalar_type(), [&]<typename input_t>() {
        dispatch(output.scalar_type(), [&]<typename output_t>() {
            constexpr int unroll = 16 / std::max(sizeof(input_t), sizeof(output_t));

            int threadsPerBlock = 1024;
            int blocksPerGrid = (int)ceilDiv<int64_t>(input.numel(), threadsPerBlock * unroll);

            cast_kernel<input_t, output_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
                input.data_ptr<input_t>(), output.data_ptr<output_t>(), input.numel());

            checkCUDA(cudaGetLastError());
        });
    });
}

Zhekai Zhang's avatar
Zhekai Zhang committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Tensor topk(Tensor x, int k) {
    constexpr int MAXK = 64 + 4;

    const int N = x.shape[-1];
    const int batch = x.numel() / N;

    assert(k <= N);
    assert(k <= MAXK);

    auto outShape = x.shape;
    outShape[-1] = k;
    outShape.dataStride.clear();


    Tensor out = Tensor::empty(outShape, Tensor::INT32, x.device());

    auto stream = getCurrentCUDAStream();

    dispatchVal(k, std::make_integer_sequence<int, MAXK + 1>(), [&]<int K>() {
        if constexpr (K == 0) {
            assert(false);
            return;
        }
        if constexpr (K > 0) {
            dispatch(x.scalar_type(), [&]<typename scalar_t>() {
                topk_kernel<scalar_t, K><<<ceilDiv(batch, 32), 32, 0, stream>>>(
                    x.data_ptr<scalar_t>(),
                    out.data_ptr<int>(),
                    N, x.stride(-2), batch
                );
                checkCUDA(cudaGetLastError());
            });
        }
    });

    return out;
}

template std::array<Tensor, 2> split_mod<2>(Tensor input);
template std::array<Tensor, 3> split_mod<3>(Tensor input);
template std::array<Tensor, 4> split_mod<4>(Tensor input);
template std::array<Tensor, 5> split_mod<5>(Tensor input);
template std::array<Tensor, 6> split_mod<6>(Tensor input);