dump_flux_lora.py 12 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import safetensors
import torch.nn.functional as F
from dump_flux import DeepCompressorModel, TensorDict, pack_wscales, pack_lora, merge_dict, unsmooth
from typing import Optional

Lora = tuple[torch.Tensor, torch.Tensor]

def load_svdq_lora(path: str, lora_path: str) -> DeepCompressorModel:
    result = DeepCompressorModel(
        model=torch.load(f"{path}/model.pt", map_location="cpu"),
        smooth=torch.load(f"{path}/smooth.pt", map_location="cpu"),
        branch=torch.load(f"{path}/branch.pt", map_location="cpu"),
        lora={}
    )

    with safetensors.safe_open(lora_path, framework="pt", device="cpu") as f:
        for k in f.keys():
            prefix = "transformer."
            if k.startswith(prefix):
                result.lora[k.removeprefix(prefix)] = f.get_tensor(k)

    dtype = next(iter(result.branch.values()))["a.weight"].dtype
    for k, v in result.lora.items():
        if v.dtype != dtype:
            print(f"Convert lora weight {k} from {v.dtype} to {dtype}")
            result.lora[k] = v.to(dtype)

    # for k, v in result.lora.items():
    #     v.fill_(0)

    return result

# q/k/v [3072, ...] -> qkv [3072 * 3, ...]
def extend_qkv(input: torch.Tensor, id: int) -> torch.Tensor:
    oc, ic = input.shape
    tmp = torch.zeros([oc * 3, ic], dtype=input.dtype, device=input.device)
    tmp[id*oc:(id+1)*oc, ...] = input
    return tmp

def merge_lora(inputs: list[Lora]) -> Optional[Lora]:
    if len(inputs) == 0:
        return None
    
    lora_downs = [x[0] for x in inputs]
    lora_ups = [x[1] for x in inputs]

    lora_down = torch.cat(lora_downs, dim=0)
    lora_up = torch.cat(lora_ups, dim=1)

    return (lora_down, lora_up)

def merge_lora_qkv(inputs: list[Lora]) -> list[Lora]:
    if len(inputs) == 0:
        return []
    
    for x in inputs:
        if not x[0].equal(inputs[0][0]):
            return inputs
    
    lora_down = inputs[0][0]
    lora_ups = [x[1] for x in inputs]
    lora_up = torch.sum(torch.stack(lora_ups), dim=0).to(lora_down.dtype)

    return [(lora_down, lora_up)]

def dump_lora(lora_down: Optional[torch.Tensor], lora_up: Optional[torch.Tensor]) -> TensorDict:
    if lora_down is None:
        return {}
    
    rank, ic = lora_down.shape
    oc = lora_up.shape[0]
    assert lora_up.shape == (oc, rank)

    if rank % 16 != 0:
        rank_pad = (rank + 16 - 1) // 16 * 16
        tmp_down = torch.zeros([rank_pad, ic], dtype=lora_down.dtype, device=lora_down.device)
        tmp_up = torch.zeros([oc, rank_pad], dtype=lora_down.dtype, device=lora_down.device)
        tmp_down[:rank, ...] = lora_down
        tmp_up[..., :rank] = lora_up
        lora_down = tmp_down
        lora_up = tmp_up
        print(f"Pad lora rank from {rank} to {rank_pad}")
    
    lora_down = pack_lora(lora_down.transpose(0, 1), is_lora_down=True)
    lora_up = pack_lora(lora_up, is_lora_down=False)

    tensors = {}
    tensors["lora_down"] = lora_down
    tensors["lora_up"] = lora_up
    return tensors

def get_original_lora(qmodel: DeepCompressorModel, key_branch: str, key_smooth: Optional[str]) -> Lora:
    dtype = qmodel.branch[key_branch]["a.weight"].dtype
    smooth = qmodel.smooth[key_smooth].to(dtype).float() if key_smooth else None
    return (
        unsmooth(qmodel.branch[key_branch]["a.weight"], smooth), 
        qmodel.branch[key_branch]["b.weight"]
    )

def dump_linear_lora(
        qmodel: DeepCompressorModel, 
        key_lora: str,
        key_branch: str,
        key_smooth: str,
        shift_bias: bool = False,
        key_bias: Optional[str] = None,
        range_ic: slice = slice(None, None, None)) -> TensorDict:
    
    lora_original = get_original_lora(qmodel, key_branch, key_smooth)

    if f"{key_lora}.lora_A.weight" in qmodel.lora:
        

        # lora_down = qmodel.lora[f"{key}.lora_A.weight"][..., range_ic]
        # lora_up = qmodel.lora[f"{key}.lora_B.weight"]

        lora_new = (
            qmodel.lora[f"{key_lora}.lora_A.weight"][..., range_ic],
            qmodel.lora[f"{key_lora}.lora_B.weight"]
        )
        lora_down, lora_up = merge_lora([lora_original, lora_new])

        rank, ic = lora_down.shape
        oc = lora_up.shape[0]
        assert lora_up.shape == (oc, rank)

        print(f"linear at {key_lora} has rank {rank}")

        tensors = dump_lora(lora_down, lora_up)
        if shift_bias and False:    # no longer need shift bias 
            if key_bias is None:
                key_bias = f"{key_branch}.bias"
            if key_bias in qmodel.model:
                bias = qmodel.model[key_bias]
                print(f"linear at {key_lora} apply shift_bias from original bias at {key_bias}")
            else:
                bias = torch.zeros([oc], dtype=lora_up.dtype, device=lora_up.device)
                print(f"linear at {key_lora} apply shift_bias from empty original bias")
            shift = torch.empty([ic], dtype=lora_down.dtype, device=lora_down.device)
            shift = shift.fill_(0.171875)
            delta = F.linear(F.linear(shift, lora_new[0]), lora_new[1])
            print(f"shift_bias delta = {delta}")
            bias -= delta
            tensors["bias"] = pack_wscales(bias[..., None])[0]
        return tensors
    else:
        print(f"linear at {key_lora} use original lora")
        return dump_lora(*lora_original)

def dump_qkv_proj_svdq_lora(
        qmodel: DeepCompressorModel,
        key_qkv: tuple[str, str, str],
        key_smooth: str,
        key_smooth_out: str
    ) -> TensorDict:

    dtype = qmodel.branch[key_smooth]["a.weight"].dtype
    smooth_out = qmodel.smooth[key_smooth_out].to(dtype).float()
    lora_original = get_original_lora(qmodel, key_smooth, key_smooth)

    loras = []
    for i in range(3):
        key = key_qkv[i]
        if f"{key}.lora_A.weight" in qmodel.lora:
            lora_down = qmodel.lora[f"{key}.lora_A.weight"]
            lora_up = qmodel.lora[f"{key}.lora_B.weight"] 
            if i == 2:
                lora_up = (lora_up / smooth_out[..., None]).to(lora_up.dtype)
            loras.append((lora_down, extend_qkv(lora_up, i)))

    # print(loras)
    
    lora_down, lora_up = merge_lora([lora_original, *merge_lora_qkv(loras)])

    print(f"qkv_proj at {key_smooth} has rank {lora_down.shape[0]}")

    return dump_lora(lora_down, lora_up)


def dump_transformer_svdq_lora(qmodel: DeepCompressorModel, layer_id: int) -> TensorDict:
    tensors = {}

    def reorder_adanorm_linear(weight: torch.Tensor) -> torch.Tensor:
        oc, ic = weight.shape
        assert oc % 6 == 0
        return weight.reshape(6, oc // 6, ic).transpose(0, 1).reshape(oc, ic).contiguous()
    def linear(key: str, **kwargs):
        key_lora = key
        key_branch = kwargs.pop("key_branch", key_lora)
        key_smooth = kwargs.pop("key_smooth", key_branch)
        return dump_linear_lora(qmodel, key_lora, key_branch, key_smooth, **kwargs)

    prefix = f"transformer_blocks.{layer_id}"
    if f"{prefix}.norm1.linear.lora_A.weight" in qmodel.lora:
        lora_down = qmodel.lora[f"{prefix}.norm1.linear.lora_A.weight"]
        lora_up   = qmodel.lora[f"{prefix}.norm1.linear.lora_B.weight"]
        tensors[f"norm1.linear.lora_down"] = lora_down
        tensors[f"norm1.linear.lora_up"] = reorder_adanorm_linear(lora_up)

    if f"{prefix}.norm1_context.linear.lora_A.weight" in qmodel.lora:
        lora_down = qmodel.lora[f"{prefix}.norm1_context.linear.lora_A.weight"]
        lora_up   = qmodel.lora[f"{prefix}.norm1_context.linear.lora_B.weight"]
        tensors[f"norm1_context.linear.lora_down"] = lora_down
        tensors[f"norm1_context.linear.lora_up"] = reorder_adanorm_linear(lora_up)

    merge_dict(tensors, dump_qkv_proj_svdq_lora(
        qmodel, 
        (f"{prefix}.attn.to_q", f"{prefix}.attn.to_k", f"{prefix}.attn.to_v"), 
        f"{prefix}.attn.to_q",
        f"{prefix}.attn.to_out.0"
    ), "qkv_proj.")

    merge_dict(tensors, dump_qkv_proj_svdq_lora(
        qmodel, 
        (f"{prefix}.attn.add_q_proj", f"{prefix}.attn.add_k_proj", f"{prefix}.attn.add_v_proj"), 
        f"{prefix}.attn.add_k_proj",
        f"{prefix}.attn.to_out.0"
    ), "qkv_proj_context.")

    merge_dict(tensors, linear(f"{prefix}.attn.to_out.0", key_smooth=None), "out_proj.")
    merge_dict(tensors, linear(f"{prefix}.attn.to_add_out", key_smooth=None), "out_proj_context.")

    merge_dict(tensors, linear(f"{prefix}.ff.net.0.proj"), "mlp_fc1.")
    merge_dict(tensors, linear(f"{prefix}.ff.net.2", key_branch=f"{prefix}.ff.net.2.linear", shift_bias=True), "mlp_fc2.")
    
    merge_dict(tensors, linear(f"{prefix}.ff_context.net.0.proj"), "mlp_context_fc1.")
    merge_dict(tensors, linear(f"{prefix}.ff_context.net.2", key_branch=f"{prefix}.ff_context.net.2.linear", shift_bias=True), "mlp_context_fc2.")

    return tensors

def dump_single_transformer_svdq_lora(qmodel: DeepCompressorModel, layer_id: int) -> TensorDict:
    tensors = {}

    def reorder_adanorm_linear(weight: torch.Tensor) -> torch.Tensor:
        oc, ic = weight.shape
        assert oc % 3 == 0
        return weight.reshape(3, oc // 3, ic).transpose(0, 1).reshape(oc, ic).contiguous()
    def linear(key: str, **kwargs):
        key_lora = key
        key_branch = kwargs.pop("key_branch", key_lora)
        key_smooth = kwargs.pop("key_smooth", key_branch)
        return dump_linear_lora(qmodel, key_lora, key_branch, key_smooth, **kwargs)
    
    prefix = f"single_transformer_blocks.{layer_id}"
    if f"{prefix}.norm.linear.lora_A.weight" in qmodel.lora:
        lora_down = qmodel.lora[f"{prefix}.norm.linear.lora_A.weight"]
        lora_up   = qmodel.lora[f"{prefix}.norm.linear.lora_B.weight"]
        tensors[f"norm.linear.lora_down"] = lora_down
        tensors[f"norm.linear.lora_up"] = reorder_adanorm_linear(lora_up)

    merge_dict(tensors, dump_qkv_proj_svdq_lora(
        qmodel,
        (f"{prefix}.attn.to_q", f"{prefix}.attn.to_k", f"{prefix}.attn.to_v"), 
        f"{prefix}.attn.to_q",
        f"{prefix}.proj_out.linears.0"
    ), "qkv_proj.")

    merge_dict(tensors, linear(f"{prefix}.proj_mlp", key_smooth=f"{prefix}.attn.to_q"), "mlp_fc1.")

    # TODO
    out_dim = 3072

    merge_dict(tensors, linear(f"{prefix}.proj_out", 
                               key_branch=f"{prefix}.proj_out.linears.0", 
                               key_smooth=None, 
                               range_ic=slice(0, out_dim)), "out_proj.")
    
    merge_dict(tensors, linear(f"{prefix}.proj_out", 
                               key_branch=f"{prefix}.proj_out.linears.1.linear",
                               shift_bias=True, 
                               range_ic=slice(out_dim, None)), "mlp_fc2.")

    return tensors

@torch.inference_mode()
def dump_flux_svdq_lora(qmodel: DeepCompressorModel, **kwargs) -> TensorDict:
    tensors = {}
    for i in range(19):
        merge_dict(tensors, dump_transformer_svdq_lora(qmodel, i, **kwargs), f"transformer_blocks.{i}.")
    for i in range(38):
        merge_dict(tensors, dump_single_transformer_svdq_lora(qmodel, i, **kwargs), f"single_transformer_blocks.{i}.")
    return tensors

if __name__ == "__main__":
    lora_name = "realism"

    if lora_name == "sketch":
        qmodel = load_svdq_lora("model-dev", "../third_party/FLUX.1-dev-LoRA-Collections/sketch.safetensors")
    elif lora_name == "realism":
        qmodel = load_svdq_lora("model-dev", "../third_party/FLUX.1-dev-LoRA-Collections/realism.safetensors")
    elif lora_name == "anime":
        qmodel = load_svdq_lora("model-dev", "../third_party/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors")
    elif lora_name == "ghibsky":
        qmodel = load_svdq_lora("model-dev", "../third_party/flux-ghibsky-illustration/lora.safetensors")
    elif lora_name == "yarn":
        qmodel = load_svdq_lora("model-dev", "../third_party/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors")
    elif lora_name == "sketch2image":
        qmodel = load_svdq_lora("model-dev", "sketch2image.safetensors")
    else:
        raise NotImplementedError

    tensors = dump_flux_svdq_lora(qmodel)

    for k, v in tensors.items():
        assert not v.isnan().any()
        assert not v.isinf().any()
    
    safetensors.torch.save_file(
        tensors, 
        f"/tmp/flux-lora-{lora_name}-bf16.safetensors")