flux.py 7.15 KB
Newer Older
1
import os
2

3
4
5
6
7
8
9
10
import comfy.model_patcher
import folder_paths
import torch
from comfy.ldm.common_dit import pad_to_patch_size
from comfy.supported_models import Flux, FluxSchnell
from diffusers import FluxTransformer2DModel
from einops import rearrange, repeat
from torch import nn
11

muyangli's avatar
muyangli committed
12
from nunchaku import NunchakuFluxTransformer2dModel
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class ComfyUIFluxForwardWrapper(nn.Module):
    def __init__(self, model: NunchakuFluxTransformer2dModel, config):
        super(ComfyUIFluxForwardWrapper, self).__init__()
        self.model = model
        self.dtype = next(model.parameters()).dtype
        self.config = config

    def forward(
        self,
        x,
        timestep,
        context,
        y,
        guidance,
        control=None,
        transformer_options={},
        **kwargs,
    ):
        assert control is None  # for now
        bs, c, h, w = x.shape
        patch_size = self.config["patch_size"]
        x = pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = (h + (patch_size // 2)) // patch_size
        w_len = (w + (patch_size // 2)) // patch_size
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(
            0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype
        ).unsqueeze(1)
        img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(
            0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype
        ).unsqueeze(0)
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        out = self.model(
            hidden_states=img,
            encoder_hidden_states=context,
            pooled_projections=y,
            timestep=timestep,
            img_ids=img_ids,
            txt_ids=txt_ids,
            guidance=guidance if self.config["guidance_embed"] else None,
        ).sample

        out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
        return out

65

66
67
68
class SVDQuantFluxDiTLoader:
    @classmethod
    def INPUT_TYPES(s):
muyangli's avatar
muyangli committed
69
70
71
72
73
74
75
76
77
78
79
        prefixes = folder_paths.folder_names_and_paths["diffusion_models"][0]
        local_folders = set()
        for prefix in prefixes:
            if os.path.exists(prefix) and os.path.isdir(prefix):
                local_folders_ = os.listdir(prefix)
                local_folders_ = [
                    folder
                    for folder in local_folders_
                    if not folder.startswith(".") and os.path.isdir(os.path.join(prefix, folder))
                ]
                local_folders.update(local_folders_)
80
        model_paths = sorted(list(local_folders))
81
        ngpus = torch.cuda.device_count()
82
83
        return {
            "required": {
muyangli's avatar
muyangli committed
84
85
86
87
88
                "model_path": (
                    model_paths,
                    {"tooltip": "The SVDQuant quantized FLUX.1 models. It can be a huggingface path or a local path."},
                ),
                "cpu_offload": (
89
                    ["auto", "enable", "disable"],
muyangli's avatar
muyangli committed
90
                    {
91
92
                        "default": "auto",
                        "tooltip": "Whether to enable CPU offload for the transformer model. 'auto' will enable it if the GPU memory is less than 14G.",
muyangli's avatar
muyangli committed
93
94
                    },
                ),
95
96
                "device_id": (
                    "INT",
muyangli's avatar
muyangli committed
97
98
99
                    {
                        "default": 0,
                        "min": 0,
100
                        "max": ngpus - 1,
muyangli's avatar
muyangli committed
101
102
103
104
105
                        "step": 1,
                        "display": "number",
                        "lazy": True,
                        "tooltip": "The GPU device ID to use for the model.",
                    },
106
107
108
109
110
111
112
113
114
                ),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_model"
    CATEGORY = "SVDQuant"
    TITLE = "SVDQuant Flux DiT Loader"

muyangli's avatar
muyangli committed
115
    def load_model(self, model_path: str, cpu_offload: str, device_id: int, **kwargs) -> tuple[FluxTransformer2DModel]:
116
        device = f"cuda:{device_id}"
muyangli's avatar
muyangli committed
117
118
119
120
121
        prefixes = folder_paths.folder_names_and_paths["diffusion_models"][0]
        for prefix in prefixes:
            if os.path.exists(os.path.join(prefix, model_path)):
                model_path = os.path.join(prefix, model_path)
                break
122

123
        # Check if the device_id is valid
124
125
126
        if device_id >= torch.cuda.device_count():
            raise ValueError(f"Invalid device_id: {device_id}. Only {torch.cuda.device_count()} GPUs available.")

127
        # Get the GPU properties
128
        gpu_properties = torch.cuda.get_device_properties(device_id)
129
        gpu_memory = gpu_properties.total_memory / (1024**2)  # Convert to MB
130
        gpu_name = gpu_properties.name
131
        print(f"GPU {device_id} ({gpu_name}) Memory: {gpu_memory} MB")
132

133
        # Check if CPU offload needs to be enabled
134
        if cpu_offload == "auto":
135
            if gpu_memory < 14336:  # 14GB threshold
136
                cpu_offload_enabled = True
137
                print("VRAM < 14GiB,enable CPU offload")
138
139
            else:
                cpu_offload_enabled = False
140
                print("VRAM > 14GiB,disable CPU offload")
141
142
        elif cpu_offload == "enable":
            cpu_offload_enabled = True
143
            print("Enable CPU offload")
144
145
        else:
            cpu_offload_enabled = False
146
            print("Disable CPU offload")
147

148
149
150
151
152
153
        capability = torch.cuda.get_device_capability(0)
        sm = f"{capability[0]}{capability[1]}"
        precision = "fp4" if sm == "120" else "int4"
        transformer = NunchakuFluxTransformer2dModel.from_pretrained(
            model_path, precision=precision, offload=cpu_offload_enabled
        )
muyangli's avatar
muyangli committed
154
        transformer = transformer.to(device)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        dit_config = {
            "image_model": "flux",
            "patch_size": 2,
            "out_channels": 16,
            "vec_in_dim": 768,
            "context_in_dim": 4096,
            "hidden_size": 3072,
            "mlp_ratio": 4.0,
            "num_heads": 24,
            "depth": 19,
            "depth_single_blocks": 38,
            "axes_dim": [16, 56, 56],
            "theta": 10000,
            "qkv_bias": True,
            "guidance_embed": True,
            "disable_unet_model_creation": True,
        }

        if "schnell" in model_path:
            dit_config["guidance_embed"] = False
            dit_config["in_channels"] = 16
            model_config = FluxSchnell(dit_config)
        elif "canny" in model_path or "depth" in model_path:
            dit_config["in_channels"] = 32
            model_config = Flux(dit_config)
        elif "fill" in model_path:
            dit_config["in_channels"] = 64
            model_config = Flux(dit_config)
        else:
            dit_config["in_channels"] = 16
            model_config = Flux(dit_config)

        model_config.set_inference_dtype(torch.bfloat16, None)
        model_config.custom_operations = None

        model = model_config.get_model({})
        model.diffusion_model = ComfyUIFluxForwardWrapper(transformer, config=dit_config)
        model = comfy.model_patcher.ModelPatcher(model, device, device_id)
        return (model,)