utils.py 12.7 KB
Newer Older
muyangli's avatar
muyangli committed
1
import gc
muyangli's avatar
muyangli committed
2
3
4
import os

import torch
5
6
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline, FluxFillPipeline, FluxPipeline, FluxPriorReduxPipeline
muyangli's avatar
muyangli committed
7
from diffusers.hooks import apply_group_offloading
8
9
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
muyangli's avatar
muyangli committed
10
11
from tqdm import tqdm

12
13
14
import nunchaku
from nunchaku import NunchakuFluxTransformer2dModel, NunchakuT5EncoderModel
from nunchaku.lora.flux.compose import compose_lora
muyangli's avatar
muyangli committed
15
from ..data import get_dataset
16
from ..utils import already_generate, compute_lpips, hash_str_to_int
muyangli's avatar
muyangli committed
17

18
19
20
21
22
23
24
25
ORIGINAL_REPO_MAP = {
    "flux.1-schnell": "black-forest-labs/FLUX.1-schnell",
    "flux.1-dev": "black-forest-labs/FLUX.1-dev",
    "shuttle-jaguar": "shuttleai/shuttle-jaguar",
    "flux.1-canny-dev": "black-forest-labs/FLUX.1-Canny-dev",
    "flux.1-depth-dev": "black-forest-labs/FLUX.1-Depth-dev",
    "flux.1-fill-dev": "black-forest-labs/FLUX.1-Fill-dev",
}
muyangli's avatar
muyangli committed
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
NUNCHAKU_REPO_PATTERN_MAP = {
    "flux.1-schnell": "mit-han-lab/svdq-{precision}-flux.1-schnell",
    "flux.1-dev": "mit-han-lab/svdq-{precision}-flux.1-dev",
    "shuttle-jaguar": "mit-han-lab/svdq-{precision}-shuttle-jaguar",
    "flux.1-canny-dev": "mit-han-lab/svdq-{precision}-flux.1-canny-dev",
    "flux.1-depth-dev": "mit-han-lab/svdq-{precision}-flux.1-depth-dev",
    "flux.1-fill-dev": "mit-han-lab/svdq-{precision}-flux.1-fill-dev",
}

LORA_PATH_MAP = {
    "hypersd8": "ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors",
    "turbo8": "alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors",
    "realism": "XLabs-AI/flux-RealismLora/lora.safetensors",
    "ghibsky": "aleksa-codes/flux-ghibsky-illustration/lora.safetensors",
    "anime": "alvdansen/sonny-anime-fixed/araminta_k_sonnyanime_fluxd_fixed.safetensors",
    "sketch": "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch/FLUX-dev-lora-children-simple-sketch.safetensors",
    "yarn": "linoyts/yarn_art_Flux_LoRA/pytorch_lora_weights.safetensors",
    "haunted_linework": "alvdansen/haunted_linework_flux/hauntedlinework_flux_araminta_k.safetensors",
    "canny": "black-forest-labs/FLUX.1-Canny-dev-lora/flux1-canny-dev-lora.safetensors",
    "depth": "black-forest-labs/FLUX.1-Depth-dev-lora/flux1-depth-dev-lora.safetensors",
}


muyangli's avatar
muyangli committed
50
def run_pipeline(dataset, batch_size: int, task: str, pipeline: FluxPipeline, save_dir: str, forward_kwargs: dict = {}):
muyangli's avatar
muyangli committed
51
52
    os.makedirs(save_dir, exist_ok=True)
    pipeline.set_progress_bar_config(desc="Sampling", leave=False, dynamic_ncols=True, position=1)
53
54
55
56
57
58
59
60
61
62
63
64
65

    if task == "canny":
        processor = CannyDetector()
    elif task == "depth":
        processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
    elif task == "redux":
        processor = FluxPriorReduxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16
        ).to("cuda")
    else:
        assert task in ["t2i", "fill"]
        processor = None

muyangli's avatar
muyangli committed
66
67
68
69
70
71
72
    for row in tqdm(
        dataset.iter(batch_size=batch_size, drop_last_batch=False),
        desc="Batch",
        total=len(dataset),
        position=0,
        leave=False,
    ):
muyangli's avatar
muyangli committed
73
74
        filenames = row["filename"]
        prompts = row["prompt"]
75
76
77
78
79
80

        _forward_kwargs = {k: v for k, v in forward_kwargs.items()}

        if task == "canny":
            assert forward_kwargs.get("height", 1024) == 1024
            assert forward_kwargs.get("width", 1024) == 1024
muyangli's avatar
muyangli committed
81
82
83
84
85
86
87
88
89
90
91
92
            control_images = []
            for canny_image_path in row["canny_image_path"]:
                control_image = load_image(canny_image_path)
                control_image = processor(
                    control_image,
                    low_threshold=50,
                    high_threshold=200,
                    detect_resolution=1024,
                    image_resolution=1024,
                )
                control_images.append(control_image)
            _forward_kwargs["control_image"] = control_images
93
        elif task == "depth":
muyangli's avatar
muyangli committed
94
95
96
97
98
99
            control_images = []
            for depth_image_path in row["depth_image_path"]:
                control_image = load_image(depth_image_path)
                control_image = processor(control_image)[0].convert("RGB")
                control_images.append(control_image)
            _forward_kwargs["control_image"] = control_images
100
        elif task == "fill":
muyangli's avatar
muyangli committed
101
102
103
104
105
106
107
108
            images, mask_images = [], []
            for image_path, mask_image_path in zip(row["image_path"], row["mask_image_path"]):
                image = load_image(image_path)
                mask_image = load_image(mask_image_path)
                images.append(image)
                mask_images.append(mask_image)
            _forward_kwargs["image"] = images
            _forward_kwargs["mask_image"] = mask_images
109
        elif task == "redux":
muyangli's avatar
muyangli committed
110
111
112
113
114
            images = []
            for image_path in row["image_path"]:
                image = load_image(image_path)
                images.append(image)
            _forward_kwargs.update(processor(images))
115

muyangli's avatar
muyangli committed
116
117
        seeds = [hash_str_to_int(filename) for filename in filenames]
        generators = [torch.Generator().manual_seed(seed) for seed in seeds]
118
        if task == "redux":
muyangli's avatar
muyangli committed
119
            images = pipeline(generator=generators, **_forward_kwargs).images
120
        else:
muyangli's avatar
muyangli committed
121
122
123
124
            images = pipeline(prompts, generator=generators, **_forward_kwargs).images
        for i, image in enumerate(images):
            filename = filenames[i]
            image.save(os.path.join(save_dir, f"{filename}.png"))
125
126
127
128
129
130
131
        torch.cuda.empty_cache()


def run_test(
    precision: str = "int4",
    model_name: str = "flux.1-schnell",
    dataset_name: str = "MJHQ",
muyangli's avatar
muyangli committed
132
    batch_size: int = 1,
133
134
135
136
137
138
139
140
141
142
143
144
    task: str = "t2i",
    dtype: str | torch.dtype = torch.bfloat16,  # the full precision dtype
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 4,
    guidance_scale: float = 3.5,
    use_qencoder: bool = False,
    attention_impl: str = "flashattn2",  # "flashattn2" or "nunchaku-fp16"
    cpu_offload: bool = False,
    cache_threshold: float = 0,
    lora_names: str | list[str] | None = None,
    lora_strengths: float | list[float] = 1.0,
muyangli's avatar
muyangli committed
145
    max_dataset_size: int = 4,
146
147
148
    i2f_mode: str | None = None,
    expected_lpips: float = 0.5,
):
muyangli's avatar
muyangli committed
149
150
    gc.collect()
    torch.cuda.empty_cache()
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    if isinstance(dtype, str):
        dtype_str = dtype
        if dtype == "bf16":
            dtype = torch.bfloat16
        else:
            assert dtype == "fp16"
            dtype = torch.float16
    else:
        if dtype == torch.bfloat16:
            dtype_str = "bf16"
        else:
            assert dtype == torch.float16
            dtype_str = "fp16"

    dataset = get_dataset(name=dataset_name, max_dataset_size=max_dataset_size)
    model_id_16bit = ORIGINAL_REPO_MAP[model_name]

    folder_name = f"w{width}h{height}t{num_inference_steps}g{guidance_scale}"

    if lora_names is None:
        lora_names = []
    elif isinstance(lora_names, str):
        lora_names = [lora_names]

    if len(lora_names) > 0:
        if isinstance(lora_strengths, (int, float)):
            lora_strengths = [lora_strengths]
        assert len(lora_names) == len(lora_strengths)

        for lora_name, lora_strength in zip(lora_names, lora_strengths):
            folder_name += f"-{lora_name}_{lora_strength}"

muyangli's avatar
muyangli committed
183
    ref_root = os.path.join("test_results", "ref")
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    save_dir_16bit = os.path.join(ref_root, dtype_str, model_name, folder_name)

    if task in ["t2i", "redux"]:
        pipeline_cls = FluxPipeline
    elif task in ["canny", "depth"]:
        pipeline_cls = FluxControlPipeline
    elif task == "fill":
        pipeline_cls = FluxFillPipeline
    else:
        raise NotImplementedError(f"Unknown task {task}!")

    if not already_generate(save_dir_16bit, max_dataset_size):
        pipeline_init_kwargs = {"text_encoder": None, "text_encoder2": None} if task == "redux" else {}
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
muyangli's avatar
muyangli committed
198
199
200
        gpu_properties = torch.cuda.get_device_properties(0)
        gpu_memory = gpu_properties.total_memory / (1024**2)

muyangli's avatar
muyangli committed
201
202
203
204
205
206
207
208
        if len(lora_names) > 0:
            for i, (lora_name, lora_strength) in enumerate(zip(lora_names, lora_strengths)):
                lora_path = LORA_PATH_MAP[lora_name]
                pipeline.load_lora_weights(
                    os.path.dirname(lora_path), weight_name=os.path.basename(lora_path), adapter_name=f"lora_{i}"
                )
            pipeline.set_adapters([f"lora_{i}" for i in range(len(lora_names))], lora_strengths)

muyangli's avatar
muyangli committed
209
210
        if gpu_memory > 36 * 1024:
            pipeline = pipeline.to("cuda")
muyangli's avatar
muyangli committed
211
212
213
214
215
216
217
        elif gpu_memory < 26 * 1024:
            pipeline.transformer.enable_group_offload(
                onload_device=torch.device("cuda"),
                offload_device=torch.device("cpu"),
                offload_type="leaf_level",
                use_stream=True,
            )
muyangli's avatar
muyangli committed
218
219
220
221
222
223
224
225
226
            if pipeline.text_encoder is not None:
                pipeline.text_encoder.to("cuda")
            if pipeline.text_encoder_2 is not None:
                apply_group_offloading(
                    pipeline.text_encoder_2,
                    onload_device=torch.device("cuda"),
                    offload_type="block_level",
                    num_blocks_per_group=2,
                )
muyangli's avatar
muyangli committed
227
            pipeline.vae.to("cuda")
muyangli's avatar
muyangli committed
228
        else:
229
            pipeline.enable_model_cpu_offload()
230
231

        run_pipeline(
muyangli's avatar
muyangli committed
232
            batch_size=batch_size,
233
234
235
236
237
238
239
240
241
242
243
244
245
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_16bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del pipeline
        # release the gpu memory
muyangli's avatar
muyangli committed
246
        gc.collect()
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        torch.cuda.empty_cache()

    precision_str = precision
    if use_qencoder:
        precision_str += "-qe"
    if attention_impl == "flashattn2":
        precision_str += "-fa2"
    else:
        assert attention_impl == "nunchaku-fp16"
        precision_str += "-nfp16"
    if cpu_offload:
        precision_str += "-co"
    if cache_threshold > 0:
        precision_str += f"-cache{cache_threshold}"
    if i2f_mode is not None:
        precision_str += f"-i2f{i2f_mode}"
muyangli's avatar
update  
muyangli committed
263
264
    if batch_size > 1:
        precision_str += f"-bs{batch_size}"
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

    save_dir_4bit = os.path.join("test_results", dtype_str, precision_str, model_name, folder_name)
    if not already_generate(save_dir_4bit, max_dataset_size):
        pipeline_init_kwargs = {}
        model_id_4bit = NUNCHAKU_REPO_PATTERN_MAP[model_name].format(precision=precision)

        if i2f_mode is not None:
            nunchaku._C.utils.set_faster_i2f_mode(i2f_mode)

        transformer = NunchakuFluxTransformer2dModel.from_pretrained(
            model_id_4bit, offload=cpu_offload, torch_dtype=dtype
        )
        transformer.set_attention_impl(attention_impl)

        if len(lora_names) > 0:
            if len(lora_names) == 1:  # directly load the lora
                lora_path = LORA_PATH_MAP[lora_names[0]]
                lora_strength = lora_strengths[0]
                transformer.update_lora_params(lora_path)
                transformer.set_lora_strength(lora_strength)
            else:
                composed_lora = compose_lora(
                    [
                        (LORA_PATH_MAP[lora_name], lora_strength)
                        for lora_name, lora_strength in zip(lora_names, lora_strengths)
                    ]
                )
                transformer.update_lora_params(composed_lora)

        pipeline_init_kwargs["transformer"] = transformer
        if task == "redux":
            pipeline_init_kwargs.update({"text_encoder": None, "text_encoder_2": None})
        elif use_qencoder:
            text_encoder_2 = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
            pipeline_init_kwargs["text_encoder_2"] = text_encoder_2
        pipeline = pipeline_cls.from_pretrained(model_id_16bit, torch_dtype=dtype, **pipeline_init_kwargs)
        if cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        else:
            pipeline = pipeline.to("cuda")
        run_pipeline(
muyangli's avatar
muyangli committed
306
            batch_size=batch_size,
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            dataset=dataset,
            task=task,
            pipeline=pipeline,
            save_dir=save_dir_4bit,
            forward_kwargs={
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
            },
        )
        del transformer
        del pipeline
        # release the gpu memory
muyangli's avatar
muyangli committed
321
        gc.collect()
322
323
324
        torch.cuda.empty_cache()
    lpips = compute_lpips(save_dir_16bit, save_dir_4bit)
    print(f"lpips: {lpips}")
muyangli's avatar
muyangli committed
325
    assert lpips < expected_lpips * 1.1