misc_kernels_impl.cuh 7.9 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
#include "reduction_utils.cuh"
#include <array>

4
5
6
#include <cuda_fp16.h>
#include <cuda_bf16.h>

Zhekai Zhang's avatar
Zhekai Zhang committed
7
8
9
#include "utils.cuh"
#include "activation_kernels_impl.cuh"

muyangli's avatar
muyangli committed
10
11
namespace nunchaku::kernels {

Zhekai Zhang's avatar
Zhekai Zhang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
template<typename T>
__global__ void add_kernel(T *a, T *b, T *c, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i < length) {
        c[i] = a[i] + b[i];
    }
}

template<typename T, int unroll>
struct alignas(sizeof(T) * unroll) Tvec {
    T data[unroll];
};

muyangli's avatar
muyangli committed
25
template<typename T, int unroll, bool no_scale>
Muyang Li's avatar
Muyang Li committed
26
27
28
29
30
31
32
33
34
35
__global__ void mul_add_kernel(T *x,
                               T *scale,
                               T *bias,
                               T scale_shift,
                               size_t length,
                               int mod_scale,
                               int mod_bias,
                               int64_t batch_stride_x,
                               int64_t batch_stride_scale,
                               int64_t batch_stride_bias) {
muyangli's avatar
muyangli committed
36
    const int batch_id = blockIdx.y;
Muyang Li's avatar
Muyang Li committed
37
38
39
40
    int thread         = threadIdx.x + blockIdx.x * blockDim.x;
    int i              = thread * unroll;
    int i_scale        = i % mod_scale;
    int i_bias         = i % mod_bias;
Zhekai Zhang's avatar
Zhekai Zhang committed
41
42
43
44
45

    if (i >= length) {
        return;
    }

muyangli's avatar
muyangli committed
46
    using Tvec = nunchaku::kernels::Tvec<T, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
47

Muyang Li's avatar
Muyang Li committed
48
    Tvec rx     = *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]);
muyangli's avatar
muyangli committed
49
    Tvec rscale = *reinterpret_cast<Tvec *>(&scale[i_scale + batch_stride_scale * batch_id]);
Muyang Li's avatar
Muyang Li committed
50
    Tvec rbias  = *reinterpret_cast<Tvec *>(&bias[i_bias + batch_stride_bias * batch_id]);
Zhekai Zhang's avatar
Zhekai Zhang committed
51
52
53

#pragma unroll
    for (int k = 0; k < unroll; k++) {
muyangli's avatar
muyangli committed
54
55
56
57
58
59
        T tmp;
        if constexpr (no_scale) {
            tmp = rx.data[k] + rbias.data[k];
        } else {
            tmp = rx.data[k] * (rscale.data[k] + scale_shift) + rbias.data[k];
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
60
61
62
63
64
65
66
        if constexpr (std::is_same_v<T, half>) {
            tmp = __hmin(tmp, (half)65504);
            tmp = __hmax(tmp, (half)-65504);
        }
        rx.data[k] = tmp;
    }

muyangli's avatar
muyangli committed
67
    *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]) = rx;
Zhekai Zhang's avatar
Zhekai Zhang committed
68

Muyang Li's avatar
Muyang Li committed
69
70
71
72
73
74
75
76
77
78
    // #pragma unroll
    //     for (int k = 0; k < unroll; k++) {
    //         // assert(i < length);
    //         x[i] = x[i] * scale[i_scale] + bias[i_bias];
    //         i++;
    //         i_scale++;
    //         i_bias++;
    //         // assert(i_scale < mod_scale);
    //         // assert(i_bias < mod_bias);
    //     }
Zhekai Zhang's avatar
Zhekai Zhang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
}

template<typename T, size_t N>
__global__ void split_mod_kernel(T *input, std::array<T *, N> output, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i * N < length) {
#pragma unroll
        for (int k = 0; k < N; k++) {
            output[k][i] = input[i * N + k];
        }
    }
}

template<typename T>
Muyang Li's avatar
Muyang Li committed
93
94
__global__ void
EmbeddingKernel(int32_t *__restrict__ input_id, T *__restrict__ output, T *__restrict__ lookup, int embed_dim) {
Zhekai Zhang's avatar
Zhekai Zhang committed
95
96
    int i = blockIdx.x;

Muyang Li's avatar
Muyang Li committed
97
    int32_t token_id     = input_id[i];
Zhekai Zhang's avatar
Zhekai Zhang committed
98
    T *output_sample_ptr = output + i * embed_dim;
Muyang Li's avatar
Muyang Li committed
99
    T *target_embed      = lookup + token_id * embed_dim;
Zhekai Zhang's avatar
Zhekai Zhang committed
100
101
102
103
104
105
106
107
108

    for (int j = threadIdx.x; j < embed_dim; j += blockDim.x) {
        output_sample_ptr[j] = target_embed[j];
    }
}

template<typename T>
__global__ void argmax_sample_kernel(T *input, int32_t *output, int hidden_dim) {
    float maxValue = -1e20;
Muyang Li's avatar
Muyang Li committed
109
    int argmax     = 0;
Zhekai Zhang's avatar
Zhekai Zhang committed
110
111
112
113
114
115
116
    for (int i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
        float data = (float)input[blockIdx.x * hidden_dim + i];
        if (data > maxValue) {
            maxValue = data;
            argmax   = i;
        }
    }
Muyang Li's avatar
Muyang Li committed
117
    // blockAllReduceMax seems to be broken when T=half
Zhekai Zhang's avatar
Zhekai Zhang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    float maxValueBlock = vllm::blockAllReduceMax(maxValue);
    if (maxValue == maxValueBlock) {
        output[blockIdx.x] = argmax;
    }
}

template<typename T>
__global__ void splitqkv_kernel(T *qkv, T *q, T *k, T *v, int q_size, int kv_size) {
    int qkv_size = q_size + 2 * kv_size;
    for (int i = threadIdx.x; i < qkv_size; i += blockDim.x) {
        T data = qkv[blockIdx.x * qkv_size + i];
        if (i < q_size) {
            q[blockIdx.x * q_size + i] = data;
        } else if (i < q_size + kv_size) {
            k[blockIdx.x * kv_size + i - q_size] = data;
        } else {
            v[blockIdx.x * kv_size + i - q_size - kv_size] = data;
        }
    }
}

Muyang Li's avatar
Muyang Li committed
139
140
template<typename T, int unroll>
__global__ void quant_kernel_static(const T *input, int8_t *output, T scale, size_t length) {
Zhekai Zhang's avatar
Zhekai Zhang committed
141
142
143
144
145
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
146
    using Tvec  = nunchaku::kernels::Tvec<T, unroll>;
muyangli's avatar
muyangli committed
147
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
148
149
150
151
152
153
154
155
156
157
158
159
160

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)rinput.data[k]) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

Muyang Li's avatar
Muyang Li committed
161
162
template<typename T, int unroll>
__global__ void quant_kernel_static_fuse_gelu(const T *input, int8_t *output, T scale, size_t length) {
Zhekai Zhang's avatar
Zhekai Zhang committed
163
164
165
166
167
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
168
    using Tvec  = nunchaku::kernels::Tvec<T, unroll>;
muyangli's avatar
muyangli committed
169
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
170
171
172
173
174
175
176
177
178
179
180
181
182

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)vllm::gelu_new_kernel(rinput.data[k])) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

183
184
185
186
template<typename Tin, typename Tout, int unroll>
__global__ void cast_kernel(const Tin *input, Tout *output, size_t length) {
    const int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;

Muyang Li's avatar
Muyang Li committed
187
    using Tvec_in  = nunchaku::kernels::Tvec<Tin, unroll>;
muyangli's avatar
muyangli committed
188
    using Tvec_out = nunchaku::kernels::Tvec<Tout, unroll>;
189

Muyang Li's avatar
Muyang Li committed
190
    Tvec_in rinput = *reinterpret_cast<const Tvec_in *>(&input[i]);
191
192
193
194
195
196
197
198
199
200
201
202
203
    Tvec_out routput;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = cuda_cast<Tout, Tin>(rinput.data[k]);
        if constexpr (std::is_same_v<Tout, half>) {
            routput.data[k] = __hmin(routput.data[k], (half)65504);
            routput.data[k] = __hmax(routput.data[k], (half)-65504);
        }
    }

    *reinterpret_cast<Tvec_out *>(&output[i]) = routput;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
204
205
206
207

// input:  [..., N]
// output: [..., K] of index in reverse order
template<typename T, int K>
Muyang Li's avatar
Muyang Li committed
208
209
__global__ void topk_kernel(const T *input, int *output, int N, int strideInput, int numRows) {
    const int row    = blockIdx.x * blockDim.x + threadIdx.x;
Zhekai Zhang's avatar
Zhekai Zhang committed
210
211
212
213
214
215
    const int offset = row * strideInput;

    if (row >= numRows) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
216
    T val[K];
Zhekai Zhang's avatar
Zhekai Zhang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    int16_t idx[K];

#pragma unroll
    for (int i = 0; i < K; i++) {
        val[i] = input[offset + i];
        idx[i] = i;
    }

    // if (blockIdx.x == 0 && threadIdx.x == 0) {
    //     for (int i = 0; i < K; i++) {
    //         printf("%d ", idx[i]);
    //     }
    //     printf("\n");
    // }

    for (int i = K; i < N; i++) {
        T newval = input[offset + i];

Muyang Li's avatar
Muyang Li committed
235
        T minval   = val[0];
Zhekai Zhang's avatar
Zhekai Zhang committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        int minpos = 0;
#pragma unroll
        for (int j = 1; j < K; j++) {
            if (val[j] < minval) {
                minval = val[j];
                minpos = j;
            }
        }

        if (newval >= minval) {
#pragma unroll
            for (int j = 0; j < K; j++) {
                if (j >= minpos) {
                    val[j] = val[j + 1];
                    idx[j] = idx[j + 1];
                }
            }
            val[K - 1] = newval;
            idx[K - 1] = i;
        }

        // if (blockIdx.x == 0 && threadIdx.x == 0) {
        //     for (int i = 0; i < K; i++) {
        //         printf("%d ", idx[i]);
        //     }
        //     printf("\n");
        // }
    }

    for (int i = 0; i < K; i++) {
        output[row * K + i] = idx[K - i - 1];
    }
muyangli's avatar
muyangli committed
268
269
}

Muyang Li's avatar
Muyang Li committed
270
}; // namespace nunchaku::kernels